一种基于迁移学习的中医罕见病中药处方生成方法和系统

    公开(公告)号:CN115424696A

    公开(公告)日:2022-12-02

    申请号:CN202211374618.5

    申请日:2022-11-04

    Abstract: 本发明公开了一种基于迁移学习的中医罕见病中药处方生成方法和系统,包括以下步骤:步骤S1:得到中医知识学习模型;步骤S2:基于多头自注意力机制的LSTM模型生成对应的中药名序列;步骤S3:得到中药剂量生成模型;步骤S4:将所述中药名序列和所述特征数据集合并作为所述中药剂量生成模型的输入,依次生成每味中药推荐的剂量,最终生成完整的中药处方。本发明使用两段式迁移学习算法,以自建中医语料库为基础,训练中医领域的中医知识学习模型,使用中医临床罕见病例对中医知识学习模型进行修正。本方法模拟了中医医生的学习过程,其生成的中药处方也将更加契合患者的病情,充分利用了医生在临床诊疗过程中产生的经验性知识。

    一种基于时序演进过程解释的疾病预后预测系统

    公开(公告)号:CN116959715A

    公开(公告)日:2023-10-27

    申请号:CN202311199176.X

    申请日:2023-09-18

    Abstract: 本发明公开了一种基于时序演进过程解释的疾病预后预测系统,该系统包括:数据采集模块,用于从电子病历数据库中提取患者的相关健康医疗数据;数据预处理模块,用于对相关健康医疗数据进行预处理;预后预测与归因模块,用于预测不同时间节点的预后,并对风险因素进行重要程度解释;可视化模块,基于预后预测与归因模块中得到的结果,解释预测结果并进行数据可视化。本发明融合了结构化的实验室检查数据和非结构化的病程记录的长期数据,在为患者不同时间周期下的预后做出精准预测的同时,对模型做出充分解释,并且提供可视化方法增加模型的透明度与可信度,利于责任相关方为患者提供优质、持续性的服务。

    一种基于迁移学习的中医罕见病中药处方生成方法和系统

    公开(公告)号:CN115424696B

    公开(公告)日:2023-02-03

    申请号:CN202211374618.5

    申请日:2022-11-04

    Abstract: 本发明公开了一种基于迁移学习的中医罕见病中药处方生成方法和系统,包括以下步骤:步骤S1:得到中医知识学习模型;步骤S2:基于多头自注意力机制的LSTM模型生成对应的中药名序列;步骤S3:得到中药剂量生成模型;步骤S4:将所述中药名序列和所述特征数据集合并作为所述中药剂量生成模型的输入,依次生成每味中药推荐的剂量,最终生成完整的中药处方。本发明使用两段式迁移学习算法,以自建中医语料库为基础,训练中医领域的中医知识学习模型,使用中医临床罕见病例对中医知识学习模型进行修正。本方法模拟了中医医生的学习过程,其生成的中药处方也将更加契合患者的病情,充分利用了医生在临床诊疗过程中产生的经验性知识。

    一种基于时序演进过程解释的疾病预后预测系统

    公开(公告)号:CN116959715B

    公开(公告)日:2024-01-09

    申请号:CN202311199176.X

    申请日:2023-09-18

    Abstract: 本发明公开了一种基于时序演进过程解释的疾病预后预测系统,该系统包括:数据采集模块,用于从电子病历数据库中提取患者的相关健康医疗数据;数据预处理模块,用于对相关健康医疗数据进行预处理;预后预测与归因模块,用于预测不同时间节点的预后,并对风险因素进行重要程度解释;可视化模块,基于预后预测与归因模块中得到的结果,解释预测结果并进行数据可视化。本发明融合了结构化的实验室检查数据和非结构化的病程记录的长期数据,在为患者不同时间周期下的预后做出精准预测的同时,对模型做出充分解释,并且提供可视化方法增加模型

Patent Agency Ranking