-
公开(公告)号:CN111897908A
公开(公告)日:2020-11-06
申请号:CN202010398752.3
申请日:2020-05-12
Applicant: 中国科学院计算技术研究所
IPC: G06F16/31 , G06F16/35 , G06F16/36 , G06F40/211 , G06F40/289 , G06F40/295 , G06N3/04
Abstract: 本发明提出一种融合依存信息和预训练语言模型的事件抽取方法及系统,包括以句子的依存句法树为输入,利用使用图卷积神经网络学习依存句法特征,并加入依存关系预测任务,通过多任务学习的方式捕捉更重要的依存关系,最后使用BERT预训练语言模型增强底层句法表达,完成中文句子的事件抽取。由此本发明对事件抽取任务下触发词抽取和论元抽取的性能均有所提高。
-
公开(公告)号:CN111897908B
公开(公告)日:2023-05-02
申请号:CN202010398752.3
申请日:2020-05-12
Applicant: 中国科学院计算技术研究所
IPC: G06F16/31 , G06F16/35 , G06F16/36 , G06F40/211 , G06F40/289 , G06F40/295 , G06N3/04
Abstract: 本发明提出一种融合依存信息和预训练语言模型的事件抽取方法及系统,包括以句子的依存句法树为输入,利用使用图卷积神经网络学习依存句法特征,并加入依存关系预测任务,通过多任务学习的方式捕捉更重要的依存关系,最后使用BERT预训练语言模型增强底层句法表达,完成中文句子的事件抽取。由此本发明对事件抽取任务下触发词抽取和论元抽取的性能均有所提高。
-