一种基于暗网网站综合特征的网站分类方法

    公开(公告)号:CN107341183B

    公开(公告)日:2021-06-22

    申请号:CN201710397901.2

    申请日:2017-05-31

    Abstract: 本发明公开了一种基于暗网网站综合特征的网站分类方法。本方法为:1)爬取目标暗网网站,得到一带标注的暗网网站训练集合;2)提取该集合中每一网站信息进行分词,构建该网站的词的空间向量,并计算每一词的权重;将词与对应权重进行相乘后的空间向量作为网站的文本特征;3)提取该暗网网站训练集合中每一网站的标签,构建该网站的标签的空间向量,并计算每个标签的权重;将标签与对应权重相乘后的空间向量作为网站的结构特征;4)将每一网站的文本特征与结构特征结合得到该网站的综合特征;5)对各网站的综合特征进行训练,得到一分类模型;然后利用该分类模型对待分类网站进行预测,得到该待分类网站的类别。本发明提高了网站分类效率。

    一种基于暗网网站综合特征的网站分类方法

    公开(公告)号:CN107341183A

    公开(公告)日:2017-11-10

    申请号:CN201710397901.2

    申请日:2017-05-31

    CPC classification number: G06F17/30864 G06F17/30705

    Abstract: 本发明公开了一种基于暗网网站综合特征的网站分类方法。本方法为:1)爬取目标暗网网站,得到一带标注的暗网网站训练集合;2)提取该集合中每一网站信息进行分词,构建该网站的词的空间向量,并计算每一词的权重;将词与对应权重进行相乘后的空间向量作为网站的文本特征;3)提取该暗网网站训练集合中每一网站的标签,构建该网站的标签的空间向量,并计算每个标签的权重;将标签与对应权重相乘后的空间向量作为网站的结构特征;4)将每一网站的文本特征与结构特征结合得到该网站的综合特征;5)对各网站的综合特征进行训练,得到一分类模型;然后利用该分类模型对待分类网站进行预测,得到该待分类网站的类别。本发明提高了网站分类效率。

Patent Agency Ranking