一种单视遥感影像高度估计和语义分割多任务预测方法

    公开(公告)号:CN115546649A

    公开(公告)日:2022-12-30

    申请号:CN202211306355.4

    申请日:2022-10-24

    Abstract: 本发明公开了一种单视遥感影像高度估计和语义分割多任务预测方法,其方法包括:A、构建多任务网络模型;B、采集高分辨率光学遥感影像样本并得到样本数据集;C、将样本数据集中的光谱空间特征影像块输入多任务网络模型中;D、采集待预测的高分辨率光学遥感影像并裁剪成光谱空间特征影像块输入训练后的多任务网络模型,分别加权计算得到高度估计预测结果DSM和语义分割预测结果SS。本发明多尺度残差及可变形卷积网络能够实现多尺度特征提取,并能克服各类地物的复杂、异质和尺度差异大等问题,DSM与语义分割生成网络分别利用混合特征和优选特征进行DSM估计与语义分割,最终得到高精度的地物DSM估计结果与语义分割结果。

    一种单视遥感影像高度估计和语义分割多任务预测方法

    公开(公告)号:CN115546649B

    公开(公告)日:2023-04-18

    申请号:CN202211306355.4

    申请日:2022-10-24

    Abstract: 本发明公开了一种单视遥感影像高度估计和语义分割多任务预测方法,其方法包括:A、构建多任务网络模型;B、采集高分辨率光学遥感影像样本并得到样本数据集;C、将样本数据集中的光谱空间特征影像块输入多任务网络模型中;D、采集待预测的高分辨率光学遥感影像并裁剪成光谱空间特征影像块输入训练后的多任务网络模型,分别加权计算得到高度估计预测结果DSM和语义分割预测结果SS。本发明多尺度残差及可变形卷积网络能够实现多尺度特征提取,并能克服各类地物的复杂、异质和尺度差异大等问题,DSM数据与语义分割生成网络分别利用混合特征和优选特征进行DSM数据估计与语义分割,最终得到高精度的地物DSM估计结果与语义分割结果。

Patent Agency Ranking