-
公开(公告)号:CN110147714B
公开(公告)日:2023-06-23
申请号:CN201910245321.0
申请日:2019-03-28
IPC: G06V20/17 , G06V20/70 , G06V10/26 , G06V10/774 , G06V10/764 , G06V10/77 , G06V10/82
Abstract: 本发明公开了一种基于无人机的煤矿采空区裂缝识别方法及检测系统,包括摄像头、无人机、无人机地面站和数据服务器;通过对数据增广处理,结合图像的深度语义信息,构建深度语义分割模型,采用密集深度可分离卷积单元,充分利用图像特征,结合空间金字塔实现裂缝的多尺度特征提取;根据训练样本中裂缝占图像的权重,自适应设置损失函数,从而加速训练过程;采用密集分类,最终获得像素级检测结果。本发明具有较高的裂缝检测精度,训练速度快,能有效减少巡视时间,提高检测可靠性,适用于大规模复杂背景下的煤矿采空区地表裂缝检测,能推广应用到其它行业的地质异常检测。
-
公开(公告)号:CN110147714A
公开(公告)日:2019-08-20
申请号:CN201910245321.0
申请日:2019-03-28
Applicant: 中国矿业大学
Abstract: 本发明公开了一种基于无人机的煤矿采空区裂缝识别方法及检测系统,包括摄像头、无人机、无人机地面站和数据服务器;通过对数据增广处理,结合图像的深度语义信息,构建深度语义分割模型,采用密集深度可分离卷积单元,充分利用图像特征,结合空间金字塔实现裂缝的多尺度特征提取;根据训练样本中裂缝占图像的权重,自适应设置损失函数,从而加速训练过程;采用密集分类,最终获得像素级检测结果。本发明具有较高的裂缝检测精度,训练速度快,能有效减少巡视时间,提高检测可靠性,适用于大规模复杂背景下的煤矿采空区地表裂缝检测,能推广应用到其它行业的地质异常检测。
-