-
公开(公告)号:CN109871888A
公开(公告)日:2019-06-11
申请号:CN201910090399.X
申请日:2019-01-30
Applicant: 中国地质大学(武汉)
Abstract: 本发明提供了一种基于胶囊网络的图像生成方法及系统:其方法包括:首先根据待生成图像的属性特征构造训练数据;然后构造图像生成模型;进而根据训练数据,采用批训练方法,对构造的图像生成模型进行训练,得到训练后的图像生成模型,并构造一个随机噪声向量;最后将待生成图像的属性向量和随机噪声向量作为训练后的图像生成模型的输入,生成与训练数据中的图像尺寸一样的新图像。本发明的有益效果是:本发明所提出的技术方案将图像生成模型中加入胶囊网络作为编码器网络,有助于模型的训练过程更快收敛;另一方面,相比卷积神经网络的池化过程,胶囊网络的动态路由算法对特征的泛化鲁棒性更强,能生成更多样化并且真实的图像。
-
公开(公告)号:CN111191099A
公开(公告)日:2020-05-22
申请号:CN201911392834.0
申请日:2019-12-30
Applicant: 中国地质大学(武汉)
IPC: G06F16/951 , G06F16/958 , G06N3/08
Abstract: 本发明提供了一种基于社交媒体的用户活动类型识别方法,通常情况下一张图由结点和边构成。首先将所有的用户评论和构成评论的词看做图中的多个结点,并定义不同词与词之间,词与评论之间的边的权重和关系,形成最基本的图;然后将发表评论的用户看做另一类结点,根据用户与评论之间的发表关系,定义用户和评论间边的权重,向已经形成的图中添加用户结点;然后将发表评论的用户的其他好友看做新一类的结点,定义用户和他们对应的好友结点间的关系权重,形成一张包含评论的文本信息和结构信息的大图。最后利用图卷积网络对形成的大图进行结点分类,得到用户活动分类的准确性。
-
公开(公告)号:CN111191099B
公开(公告)日:2023-04-07
申请号:CN201911392834.0
申请日:2019-12-30
Applicant: 中国地质大学(武汉)
IPC: G06F16/951 , G06F16/958 , G06N3/0464 , G06N3/08
Abstract: 本发明提供了一种基于社交媒体的用户活动类型识别方法,通常情况下一张图由结点和边构成。首先将所有的用户评论和构成评论的词看做图中的多个结点,并定义不同词与词之间,词与评论之间的边的权重和关系,形成最基本的图;然后将发表评论的用户看做另一类结点,根据用户与评论之间的发表关系,定义用户和评论间边的权重,向已经形成的图中添加用户结点;然后将发表评论的用户的其他好友看做新一类的结点,定义用户和他们对应的好友结点间的关系权重,形成一张包含评论的文本信息和结构信息的大图。最后利用图卷积网络对形成的大图进行结点分类,得到用户活动分类的准确性。
-
-