一种基于社交媒体的用户活动类型识别方法

    公开(公告)号:CN111191099B

    公开(公告)日:2023-04-07

    申请号:CN201911392834.0

    申请日:2019-12-30

    Abstract: 本发明提供了一种基于社交媒体的用户活动类型识别方法,通常情况下一张图由结点和边构成。首先将所有的用户评论和构成评论的词看做图中的多个结点,并定义不同词与词之间,词与评论之间的边的权重和关系,形成最基本的图;然后将发表评论的用户看做另一类结点,根据用户与评论之间的发表关系,定义用户和评论间边的权重,向已经形成的图中添加用户结点;然后将发表评论的用户的其他好友看做新一类的结点,定义用户和他们对应的好友结点间的关系权重,形成一张包含评论的文本信息和结构信息的大图。最后利用图卷积网络对形成的大图进行结点分类,得到用户活动分类的准确性。

    一种基于社交媒体的用户活动类型识别方法

    公开(公告)号:CN111191099A

    公开(公告)日:2020-05-22

    申请号:CN201911392834.0

    申请日:2019-12-30

    Abstract: 本发明提供了一种基于社交媒体的用户活动类型识别方法,通常情况下一张图由结点和边构成。首先将所有的用户评论和构成评论的词看做图中的多个结点,并定义不同词与词之间,词与评论之间的边的权重和关系,形成最基本的图;然后将发表评论的用户看做另一类结点,根据用户与评论之间的发表关系,定义用户和评论间边的权重,向已经形成的图中添加用户结点;然后将发表评论的用户的其他好友看做新一类的结点,定义用户和他们对应的好友结点间的关系权重,形成一张包含评论的文本信息和结构信息的大图。最后利用图卷积网络对形成的大图进行结点分类,得到用户活动分类的准确性。

    一种基于神经网络的司法领域关系抽取方法及系统

    公开(公告)号:CN109933789B

    公开(公告)日:2021-04-13

    申请号:CN201910145396.1

    申请日:2019-02-27

    Abstract: 一种基于神经网络的司法领域关系抽取方法及系统,本发明在原有的开放式神经网络关系抽取框架基础上,构建司法领域专用数据集,并形成司法领域罪名特征集,通过优化神经网络提高关系抽取准确率的方法:首先,从中国裁判文书网获取大量司法领域相关非结构化文本,并用Word2Vec模型,Bert模型等向量转换模型得到文本的向量表示;其次,通过对非结构化文本进行TF‑IDF词频统计,得到不同罪名及案由的特征集,并得到向量表示;然后优化OpenNRE模型及JointNRE模型,得到准确性更高的JudNRE模型;最后,利用JudNRE模型对文本向量,罪名特征向量向量进行处理,得到司法领域关系抽取模型,用于对待处理的司法领域非结构化文本数据进行司法领域关系抽取,得到对应的实体三元组。

    一种基于神经网络的司法领域关系抽取方法及系统

    公开(公告)号:CN109933789A

    公开(公告)日:2019-06-25

    申请号:CN201910145396.1

    申请日:2019-02-27

    Abstract: 一种基于神经网络的司法领域关系抽取方法及系统,本发明在原有的开放式神经网络关系抽取框架基础上,构建司法领域专用数据集,并形成司法领域罪名特征集,通过优化神经网络提高关系抽取准确率的方法:首先,从中国裁判文书网获取大量司法领域相关非结构化文本,并用Word2Vec模型,Bert模型等向量转换模型得到文本的向量表示;其次,通过对非结构化文本进行TF-IDF词频统计,得到不同罪名及案由的特征集,并得到向量表示;然后优化OpenNRE模型及JointNRE模型,得到准确性更高的JudNRE模型;最后,利用JudNRE模型对文本向量,罪名特征向量向量进行处理,得到司法领域关系抽取模型,用于对待处理的司法领域非结构化文本数据进行司法领域关系抽取,得到对应的实体三元组。

Patent Agency Ranking