基于伪标签半监督核局部费舍尔判别分析轴承故障诊断方法

    公开(公告)号:CN109582003B

    公开(公告)日:2021-04-20

    申请号:CN201811462243.1

    申请日:2018-12-03

    Abstract: 基于伪标签半监督核局部费舍尔判别分析轴承故障诊断方法,其特征在于:该方法包括以下步骤:(1)收集轴承不同工状下振动信号经分段后构成训练样本;(2)对(1)获取的训练样本进行特征提取;(3)对(2)的特征归一化处理;(4)对(3)的全体特征集合利用密度峰值聚类求得聚类标签集;(5)用(4)的聚类伪标签构造局部聚类间散度和聚类内散度正则化项,并同FDA中有标签样本的类间散度和类内散度结合,确定最终投影向量;(6)利用(5)的投影向量求有标签特征集在降维空间中的投影集合;(7)利用(6)的投影集合训练极限学习机;(8)对收集的振动信号经(2)、(3)和(5)处理后输入到模型中确定工况。本发明申请应用于轴承设备的故障识别问题。

    基于伪标签半监督核局部费舍尔判别分析轴承故障诊断

    公开(公告)号:CN109582003A

    公开(公告)日:2019-04-05

    申请号:CN201811462243.1

    申请日:2018-12-03

    Abstract: 基于伪标签半监督核局部费舍尔判别分析轴承故障诊断,其特征在于:该方法包括以下步骤:(1)收集轴承不同工状下振动信号经分段后构成训练样本;(2)对(1)获取的训练样本进行特征提取;(3)对(2)的特征归一化处理;(4)对(3)的全体特征集合利用密度峰值聚类求得聚类标签集;(5)用(4)的聚类伪标签构造局部聚类间散度和聚类内散度正则化项,并同FDA中有标签样本的类间散度和类内散度结合,确定最终投影向量;(6)利用(5)的投影向量求有标签特征集在降维空间中的投影集合;(7)利用(6)的投影集合训练极限学习机;(8)对收集的振动信号经(2)、(3)和(5)处理后输入到模型中确定工况。本发明申请应用于轴承设备的故障识别问题。

Patent Agency Ranking