提升光谱图像监督分类性能的样本扩充与一致性判别方法
Abstract:
本发明公开了一种提升光谱图像监督分类性能的样本扩充与一致性判别方法,包括以下步骤:构造形状匹配模板库;计算单个训练样本的邻域相似度矩阵;使用模板库对相似度矩阵进行匹配,并根据匹配度选取最佳匹配模板;根据最佳匹配模板扩充训练样本;使用扩充后的训练集训练监督分类器;计算测试样本的邻域预测矩阵;使用模板库对邻域预测矩阵进行匹配,并根据一致性度量计算最佳判别结果。本发明通过形状模板匹配有效扩充监督样本,利用模板库与分类预测矩阵一致性判别改善分类结果的局部聚集性,大幅提升监督分类器的精度,提升了小样本监督分类算法的鲁棒性,可适用于任何监督分类器。
Patent Agency Ranking
0/0