An apparatus, such as an electrical device or a wall box, may have a mounting mechanism that may be configured to mount the apparatus to a wall in a manner that may facilitate secure fastening to the wall. The apparatus may comprise at least one mounting clamp that may have a fin and a drum that receives a mounting screw. The fin of the mounting clamp may be configured to be located within a pocket formed in the body. When a mounting screw is driven, the mounting clamp may rotate from the pocket into a position in which the drum of the mounting clamp may be received in a channel formed in the body. The drum may be configured to move through the channel as the mounting screw is further driven. The gap may be sized to retain the mounting clamp within the channel as the drum moves therethrough.
A protector includes a protector body, a lid member, and an engagement mechanism. The lid member has a ceiling and a protrusion. When a first wiring member and a second wiring member are accommodated in an accommodating space in a non-regular arrangement in which a peripheral surface of the first wiring member contacts a bottom and a peripheral surface of the second wiring member contacts the peripheral surface of the first wiring member, the peripheral surface of the second wiring member contacts the protrusion on the way of the transition of the engagement mechanism from a non-engagement state to an engagement state. When accommodated in a regular arrangement, the engagement mechanism transitions from the non-engagement state to the engagement state.
Provided is a vertical cavity surface emitting laser diode (VCSEL) with low compressive strain DBR layer, including a GaAs substrate, a lower DBR layer, a lower spacer layer, an active region, an upper spacer layer and an upper DBR layer. The lower or the upper DBR layer includes multiple low refractive index layers and multiple high refractive index layers. The lower DBR layer, the lower spacer layer, the upper spacer layer or the upper DBR layer contains AlxGa1-xAs1-yPy, where the lattice constant of AlxGa1-xAs1-yPy is greater than that of the GaAs substrate. This can moderately reduce excessive compressive strain due to lattice mismatch or avoid tensile strain during the epitaxial growth, thereby reducing the chance of deformation and bowing of the VCSEL epitaxial wafer or cracking during manufacturing. Additionally, the VCSEL epitaxial layer can be prevented from generating excessive compressive strain or tensile strain during the epitaxial growth.
A light bulb holder structure includes a bulb cap and a connector. By integral molding, the connector made of insulating material is molded with one end of the bulb cap to form an integration. The protrusion on the connector can increase the creepage distance of the light bulb, so as to improve waterproof performance of the light bulb and suppress erosion caused by ingress of water. In addition, the bulb cap may further be provided with connection parts to secure the combination of the connector and the bulb cap. Further, the end portion of the connector close to bulb cap may be provided with a threaded segment, and the threaded segment is an optional structure which can not only greatly improve the creepage distance, but also fix the relative position of the connector and the bulb cap when the light bulb is screwed into the socket.
An electrical plug retaining assembly is provided. The assembly includes a first electrical plug socket adapted to receive first and second electrical prongs of a first electrical plug therein when first and second retaining arm assemblies in the first electrical plug socket are depressed. The first electrical plug socket secures the first and second electrical prongs of the first electrical plug therein when first and second springs in the first electrical plug socket bias the first and second retaining arm assemblies, respectively, thereof in first and second directions, respectively, when the first and second retaining arm assemblies in the first electrical plug socket are not depressed. The first electrical plug socket has first and second electrical terminals that are electrically coupled to the first and second electrical prongs, respectively, of the first electrical plug.
A safety socket module includes: a shell; an upper cover, configured to cover the shell, where jacks are provided on the upper cover; compartments, where the number of the compartments corresponds to the number of the jacks, each of the compartments is arranged in the shell and below a respective jack of the jacks, and an interior of each of the compartments is accessible from an exterior of the shell through the respective jack; waterproof electrical connection switches, arranged in the compartments and configured to asynchronously control connection and disconnection of a circuit between a power supply and a plug of an electric appliance; and lock control members, respectively arranged in the compartments and aligned with the jacks; where each of the waterproof electrical connection switches includes a waterproof capsule, and a movable contact piece and a static contact piece arranged opposite to each other in the waterproof capsule.
A terminal-equipped electric wire, a connector including the terminal-equipped electric wire and a manufacturing method of the connector are provided. The terminal-equipped electric wire includes an electric wire including a conductor core wire formed of a conductor material and a terminal formed of a composite metal material in which a plurality of types of metal materials are clad-bonded with each other. The terminal includes a first connection portion and a second connection portion, each of which is formed of a metal material of respective one of the plurality of types of metal materials. The conductor core wire is electrically connected to one of the first and second connection portions, the one corresponding to the conductor material forming the conductor core wire.
A connector is configured to terminate an end of a coaxial cable. The connector includes a body, a nut, an outer conductor engager, and a grounding member. The body has a cable receiving end configured to receive the end of the coaxial cable, and the nut is configured to be coupled with and to rotate relative to the body. The outer conductor engager is configured to receive a conductive layer of end of the coaxial cable, and the grounding member is configured to couple the body, the nut, and the outer conductor engager in an assembled configuration. A first end of the grounding member is configured to extend grounding of the coaxial cable from the outer conductor engager to the nut, and a second end of the grounding member is configured to grip an outer protective jacket of the coaxial cable to prevent removal of the coaxial cable from the connector.
An electronic device is provided. The electronic device includes a substrate, a feeding line and an electrode. The feeding line is disposed on the substrate for transmitting a signal. The electrode is disposed on the substrate for receiving the signal. In addition, an end portion of the feeding line is disposed opposite to an end portion of the electrode.
An antenna structure may include a solid antenna structure and a mesh antenna structure. The mesh antenna structure may be coupled to an outer edge of the solid antenna structure through two or more ribs. The two or more ribs may be configured to extend away from the solid antenna structure to expand the mesh antenna structure and increase a surface area of the antenna structure.
An antenna structure with a wide beamwidth includes a dielectric substrate, a ground plane, a first radiation element, a plurality of first conductive via elements, and a first feeding connection element. The dielectric substrate has a first surface and a second surface which are opposite to each other. The ground plane is disposed on the second surface of the dielectric substrate. The first radiation element is disposed on the first surface of the dielectric substrate. A first notch is formed on the first radiation element. The first conductive via elements penetrate the dielectric substrate. The first conductive via elements are coupled between the first radiation element and the ground plane. The first feeding connection element is coupled to the first radiation element. The first feeding connection element extends into the first notch of the first radiation element.
An antenna system includes a first substrate, a plurality of chips, a system board having an upper and lower surface, and a beam forming phased array that includes a plurality of radiating waveguide antenna cells for millimeter wave communication. Each radiating waveguide antenna cell includes a plurality of pins where a first pin is connected with a body of a corresponding radiating waveguide antenna cell and the body corresponds to ground for the pins. A first end of the radiating waveguide antenna cells is mounted on the first substrate, where the upper surface of the system board comprises a plurality of electrically conductive connection points to connect the first end of the plurality of radiating waveguide antenna cells to the ground.
This document describes a waveguide with a beam-forming feature with radiation slots. The beam-forming feature of the waveguide includes recessed walls surrounding a plurality of radiation slots. The recessed walls of the waveguide may be walls of equal height and width, or they may include further features that manipulate the beam being formed for certain applications. Some examples of these further features are the inclusion of a choke on one wall, one wall having a height greater than a parallel wall, or the walls either including a step or a taper, such that the beam-forming feature is narrower near the surface of the waveguide with the radiation slots and wider further from the surface of the waveguide with the radiation slots. The beam-forming feature may reduce grating lobes in the radiation pattern thereby improving accuracy and performance of the host system.
An antenna module includes a multilayer substrate having a first main surface and a second main surface opposing to each other, a patch antenna formed on a side of the first main surface of the multilayer substrate and configured with a radiation electrode and a ground electrode, an RFIC formed on a side of the second main surface of the multilayer substrate, a first filter, and a second filter different from the first filter, wherein the patch antenna has a first feed point and a second feed point provided at different positions in the radiation electrode, the first feed point is electrically connected to the RFIC via the first filter, the second feed point is electrically connected to the RFIC via the second filter, and the first filter and the second filter are formed in the multilayer substrate.
A phase shifter and an antenna are provided. The phase shifter includes: oppositely arranged first and second substrates; a medium layer between the first and second substrates and having an adjustable dielectric constant; a phase shift unit including a transmission line and a phase control electrode, the transmission line being between the first substrate and the medium layer, and the phase control electrode being between the second substrate and the medium layer; and multiple first wires for regulating an electric field between the transmission line and the phase control electrode, an orthographic projection of the first wires onto the first substrate being parallel to an orthographic projection of the transmission line onto the first substrate, the orthographic projection of the first wires onto the first substrate being on opposite sides of the orthographic projection of the transmission line onto the first substrate.
A semiconductor package includes a semiconductor die, an encapsulation layer and at least one antenna structure. The encapsulation layer laterally encapsulates the semiconductor die. The at least one antenna structure is embedded in the encapsulation layer aside the semiconductor die. The at least one antenna structure includes a dielectric bulk, and a dielectric constant of the dielectric bulk is higher than a dielectric constant of the encapsulation layer.
A coating composition including a solvent, inorganic particles, a dispersant, and a binder, wherein the binder includes a binder B and a binder A, both the binder B and the binder A include a VDF unit and a HFP unit, binder B includes 8 to 50 wt % of the HFP-derived unit, and binder A includes 5 wt % or more of the HFP-derived unit under a condition that a proportion of the HFP-derived unit in the binder A is 80% or less of a proportion of the HFP-derived unit in the binder B, the binder B has a total number average molecular weight of 200,000 to 2,000,000 Da, and the binder A has a total number average molecular weight corresponding to 70% or less of that of the binder B, and a weight ratio of the binder A:the binder B in the coating composition is 0.1 to 10:1. The coating composition is suitable for use in coating at least one surface of a porous substrate having a plurality of pores.
The invention provides a blower. The blower includes: a main body extending in a longitudinal direction, a battery pack supporting member arranged on the main body, and a battery pack arranged on the battery pack supporting member, the battery pack supporting member is separable with respect to the main body, which includes a body forming a battery pack receiving portion and a mounting portion being coupled with the main body, the battery pack supporting member and the battery pack are detachably coupled to the main body. According to the blower of the invention, the battery pack supporting member is engaged with the main body, and a single battery pack or a dual battery packs can be installed by installing battery pack supporting members with different structures on the main body of the blower, which facilitates the switching between the single battery pack and the dual battery packs.
A battery module has a battery stack that includes a plurality of prismatic batteries and an inter-battery separator disposed between every two of the prismatic batteries adjacent to each other in an X direction along which the plurality of prismatic batteries is stacked. The inter-battery separator includes: a middle member having a plate shape; a first side plate-shaped member disposed on a first side of the middle member in the X direction and made of a material that is superior in thermal insulation to the middle member; and a second side plate-shaped member disposed on a second side of the middle member in the X direction and made of a material that is superior in thermal insulation to the middle member.
An improved method of recycling lithium-ion battery anode scraps is provided. The method involves isolating an anode scrap including a graphite anode film adhered to a current collector foil with a polyvinylidene fluoride binder. The anode scrap is combined with deionized water to form a first mixture. The graphite anode film is delaminated from the current collector foil to form a second mixture comprising a free collector foil and a free graphite anode film. The free graphite anode film is filtered and dried from the second mixture to recover the free graphite anode film. The free graphite anode film is combined with a solvent comprising N-methyl-2-pyrrolidone (NMP) to form an anode formation slurry. The slurry is coated onto a copper current collector to produce a new anode.
A self-discharge inspection method for a power storage device having a property that while the power storage device is pressed under a first load and charged with a first device voltage, in which a device voltage decreases when a load is reduced from the first load, includes detecting the first device voltage of the power storage device pressed under the first load and charged, continuously applying a power-supply voltage equal to the first device voltage from an external power supply, detecting a power-supply current flowing to the power storage device, determining a self-discharge state of the power storage device based on the detected power-supply current, and reducing the load applied to the power storage device from the first load by a load reduction amount before the power-supply current stabilizes after start of the voltage continuously applying.
An electrolyte including an additive of compound of formula I,
wherein n is an integer ranging from 0 to 10;
R1 and R2 are each independently selected from a substituted or unsubstituted C1-C10 alkylidene group, a substituted or unsubstituted C2-C10 alkenylene group, or a substituted or unsubstituted C1-C10 alkyleneoxy group; A1 selected from CH, C, N, S, O, B or Si; A2 is selected from CH—R3, N—R3, S, O, B—R3 or SiH—R3; A3 selected from CH2, CH, C, N, S, O, B or Si; R3 is selected from hydrogen, halogen, a substituted or unsubstituted C1-C10 alkyl group, or a substituted or unsubstituted C3-C10 cycloalkyl group; X1 is selected from a substituted or unsubstituted C1-C10 alkylidene group, a substituted or unsubstituted C2-C10 alkenylene group, ═Rc═, or ═Rc—, wherein Rc is selected from a substituted or unsubstituted C2-C6 alkylidene group.
A rechargeable battery that minimizes a current amount difference between a double-sided coated region and a single-sided coated region by increasing resistance of the single-sided coated region to be higher than that of the double-sided coated region in an electrode plate (e.g., a negative electrode plate). A rechargeable battery including: an electrode assembly including an electrode plate at opposite sides of a separator and spirally winding the separator and the electrode plates; and a pouch to accommodate the electrode assembly therein and to draw out an electrode tab connected to the electrode plates to the outside thereof. The electrode plate includes: a double-sided coated region having an active material on opposite sides of a substrate and a single-sided coated region having an active material on a single surface of the substrate, wherein resistance of the single-sided coated region is higher than that of the double-sided coated region.
An apparatus for manufacturing a laminated electrode body that includes a laminating unit having a rotatable cross arm, a first transport head and a third transport head at a first distance from a rotation center of the cross arm and a second transport head and a fourth transport head at a second distance shorter than the first distance from the rotation center; a positive electrode supply stage that includes a first positive electrode mounting table at the first distance and a second positive electrode mounting table at the second distance from the rotation center; a negative electrode supply stage that includes a first negative electrode mounting table at the first distance and a second negative electrode mounting table at the second distance from the rotation center; a first laminating stage at the first distance from the rotation center; and a second laminating stage at the second distance.
In an embodiment, a fuel cell includes: a flexible substrate including a first fuel-tolerant material; a fitting on the flexible substrate, the fitting including first openings extending through an outer portion of the fitting; a primer coating on the outer portion of the fitting, the primer coating including a second fuel-tolerant material; first yarns strung through the first openings of the fitting, the first yarns stitched into the flexible substrate; and an encapsulant encapsulating the first yarns, the primer coating, and the outer portion of the fitting, the encapsulant disposed on the flexible substrate, the encapsulant including a third fuel-tolerant material, the third fuel-tolerant material chemically bonded to the second fuel-tolerant material and the first fuel-tolerant material.
An apparatus for measuring a cell pitch of a fuel cell stack, the fuel cell stack including a plurality of unit cells stacked in a stacking direction, wherein each unit cell has a membrane electrode assembly (MEA) interposed between a pair of metal separators, is provided. The apparatus includes a detector configured to generate a magnetic field in response to application of a current while being moved along the stacking direction of the unit cells, and sense an induced current generated in the separators by the generated magnetic field to detect positions of the separators.
The invention relates to a fuel cell (1) for a fuel cell stack (11), comprising a polymer membrane (2) which serves as an electrolyte and has respectively on both sides a catalyst layer (3, 4) for forming an anode (3) on the one side and a cathode (4) on the other side, a gas diffusion layer (5) and a bipolar plate (6) being applied to each of the two analyst layers (3, 4). According to the invention, a short-circuit element (7) is applied, preferably printed, to at least one bipolar plate (6), namely on the side facing away from the gas diffusion layer (5). The invention also relates to a fuel cell stack (11) and to a method for operating a fuel cell stack (11).
A film includes a base layer, where each of front and back sides of the base layer is provided with a bonding layer, a composite structure layer, an aluminum material layer, and an anti-oxidation layer in sequence. The composite structure layer includes at least two structure layers. Each structure layer is composed of an aluminum material layer and a reinforcement layer, and the structure layers are stacked. With the composite structure layer, the new film has a resistivity as low as 4.5×10−8 Ω·m, a peel force as high as 4.8 N to 5.2 N, and improved bonding force and compactness.
The invention relates to active electrode materials and to methods for the manufacture of active electrode materials. Such materials are of interest as active electrode materials in lithium-ion or sodium-ion batteries. The invention provides an active electrode material expressed by the general formula M1aM22-aM3bNb34-bO87-c-dQd.
A positive active material made of carbon-coated lithium iron phosphate includes a lithium iron phosphate substrate, and a carbon coating layer on a surface of the substrate. The lithium iron phosphate substrate has a general structural formula LiFe1-aMaPO4, where M is at least one selected from Cu, Mn, Cr, Zn, Pb, Ca, Co, Ni, Sr, Nb, or Ti, and 0≤a≤0.01. A carbon coating factor of the carbon-coated lithium iron phosphate,
η
=
BET
1
BET
2
,
satisfies 0.81≤η≤0.95, where BET1 denotes a specific surface area of mesopore and macropore structures in the carbon-coated lithium iron phosphate, and BET2 denotes a total specific surface area of the carbon-coated lithium iron phosphate.
A composition for an electrochemical device functional layer contains a polymer A and a solvent. The polymer A contained in the composition for an electrochemical device functional layer includes an alkylene oxide structure-containing monomer unit in a proportion of not less than 5 mol % and not more than 95 mol %.
As the pixel density of optoelectronic devices becomes higher, and the size of the optoelectronic devices becomes smaller, the problem of isolating the individual micro devices becomes more difficult. A method of fabricating an optoelectronic device, which includes an array of micro devices, comprises: forming a device layer structure including a monolithic active layer on a substrate; forming an array of first contacts on the device layer structure defining the array of micro devices; mounting the array of first contacts to a backplane comprising a driving circuit which controls the current flowing into the array of micro devices; removing the substrate; and forming an array of second contacts corresponding to the array of first contacts with a barrier between each second contact.
A display device includes: a display module; a driving chip assembly electrically connected to the display module and including a driving chip and a heat dissipator at least partially surrounding the driving chip; and a main circuit board electrically connected to the driving chip assembly and contacting the heat dissipator.
Light emitting devices and methods for their manufacture are provided. According to one aspect, a light emitting device is provided that comprises a substrate having a recess, and an interlayer dielectric layer located on the substrate. The interlayer dielectric layer may have a first hole and a second hole, the first hole opening over the recess of the substrate. The light emitting device may further include first and second micro LEDs, the first micro LED having a thickness greater than the second micro LED. The first micro LED and the second micro LED may be placed in the first hole and the second hole, respectively.
An integrated circuit includes a photodetector that has an epitaxial layer with a first conductivity type located over a substrate. A buried layer of the first conductivity type is located within the epitaxial layer and has a higher carrier concentration than the epitaxial layer. A semiconductor layer located over the buried layer has an opposite second conductivity type and includes a first sublayer over the buried semiconductor layer and a second sublayer between the first sublayer and the buried layer. The first sublayer has a larger lateral dimension than the second sublayer, and has a lower carrier concentration than the second sublayer.
Provided is a radiation detecting element that has high adhesion between electrode portions and a substrate and does not suffer from performance failures due to insufficient insulation between the electrode portions, even if a distance between the electrode portions is narrower in order to obtain a high-definition radiation drawn image. The radiation detecting element includes: a plurality of electrode portions; and an insulating portion provided between the electrode portions on a surface of a substrate made of a compound semiconductor crystal containing cadmium telluride or cadmium zinc telluride, wherein an intermediate layer containing tellurium oxide is present between each of the electrode portions and the substrate, and wherein tellurium oxide is present on an upper portion of the insulating portion, and the tellurium oxide on the upper portion of the insulating portion has a maximum thickness of 30 nm or less.
A four junction solar cell and its method of manufacture including an upper first solar subcell composed of a semiconductor material having a first band gap; a second solar subcell adjacent to said first solar subcell and composed of a semiconductor material having a second band gap smaller than the first band gap and being lattice matched with the upper first solar subcell; a third solar subcell adjacent to said second solar subcell and composed of a semiconductor material having a third band gap smaller than the second band gap and being lattice matched with the second solar subcell; a graded interlayer adjacent to the third solar subcell and having a fourth band gap greater than the third band gap; and a bottom solar subcell adjacent to the graded interlayer and being lattice mismatched from the third solar subcell and having a fifth band gap smaller than the fifth band gap, wherein the selection of composition of the subcells and their band gaps maximizes the efficiency of the solar cell at a predetermined temperature value (between 28 and 70 degrees Centigrade) at a predetermined time after the initial deployment in space, (the time of the initial deployment being referred to as “beginning-of-life (BOL)”), such predetermined time being referred to as the “end-of-life (EOL)” time, and such time being at least one year.
The present invention relates to a back-sheet comprising a weatherable layer, a structural layer and a functional layer whereby one of the layers comprises polybutylene terephthalate and one or both of the other layers comprises a polyolefin. The layer comprising polybutylene terephthalate preferably further comprises an impact modifier. The impact modifier comprises an elastomer that contains functional groups that bond chemically and/or interact physically with the polybutylene terephthalate and wherein the elastomer constitutes the dispersed phase at a concentration of 1-49 Vol %. Preferably the elastomer contains epoxy functional groups. The polyolefin is selected from the group consisting of polyethylene homo or copolymers, polypropylene homo or (block-)copolymers, cyclic olefin copolymers, polymethylpentene, a thermoplastic polyolefine (TPO), or blends thereof.
According to one embodiment, a device includes a first electrode, a second electrode spaced from the first electrode, a well extending between the first electrode and the second electrode, one or more chalcogens in the well, and at least one halogen mixed with the one or more chalcogens in the well. In addition, the chalcogens are selected from the group consisting of sulfur, selenium, tellurium, and polonium.
A manufacturing method of a semiconductor device includes the following steps. An opening is formed penetrating a dielectric layer on a semiconductor substrate. A stacked structure is formed on the dielectric layer. The stacked structure includes a first semiconductor layer partly formed in the opening and partly formed on the dielectric layer, a sacrificial layer formed on the first semiconductor layer, and a second semiconductor layer formed on the sacrificial layer. A patterning process is performed for forming a fin-shaped structure including the first semiconductor layer, the sacrificial layer, and the second semiconductor layer. An etching process is performed to remove the sacrificial layer in the fin-shaped structure. The first semiconductor layer in the fin-shaped structure is etched to become a first semiconductor wire by the etching process. The second semiconductor layer in the fin-shaped structure is etched to become a second semiconductor wire by the etching process.
A method comprises forming a source/drain region on a substrate; forming a dielectric layer over the source/drain region; forming a contact hole in the dielectric layer; forming a contact hole liner in the contact hole; removing a first portion of the contact hole liner to expose a sidewall of the contact hole; etching the exposed sidewall of the contact hole to laterally expand the contact hole; and forming a contact plug in the laterally expanded contact hole.
A semiconductor structure is disclosed. The semiconductor structure includes: a substrate; an isolation region adjacent to the drain region; a gate electrode over the substrate and further downwardly extends into the substrate, wherein a portion of the gate electrode below a top surface of the substrate abuts the isolation region; and a source region and a drain region formed in the substrate on either side of the gate structure. An associated method for fabricating the semiconductor structure is also disclosed.
An HFET includes a first and second semiconductor material. A first composite passivation layer includes a first insulation layer and a first passivation layer, and the first passivation layer is disposed between the first insulation layer and the second semiconductor material. The HFET includes a second passivation layer, where the first insulation layer is disposed between the first passivation layer and the second passivation layer. A gate dielectric is disposed between the second semiconductor material and the first passivation layer. A source electrode and a drain electrode are coupled to the second semiconductor material, and a gate electrode is disposed laterally between the source electrode and the drain electrode. A first gate field plate is disposed between the first passivation layer and the second passivation layer and electrically connected to the gate electrode, and a second gate field plate is disposed above first gate field plate.
An HEMT includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer. The composition of the first III-V compound layer is different from that of the second III-V compound layer. A gate is disposed on the second III-V compound layer. The gate includes a first P-type III-V compound layer, an undoped III-V compound layer and an N-type III-V compound layer are deposited from bottom to top. The first P-type III-V compound layer, the undoped III-V compound layer, the N-type III-V compound layer and the first III-V compound layer are chemical compounds formed by the same group III element and the same group V element. A drain electrode is disposed at one side of the gate. A drain electrode is disposed at another side of the gate. A gate electrode is disposed directly on the gate.
A semiconductor device includes a semiconductor part, first and second electrodes, and a control electrode. The semiconductor part is provided between the first and second electrodes. The semiconductor part includes first to seventh layers. The second of a second conductivity type is provided between the first layer of a first conductivity type and the first electrode. The third and fourth layers of the first conductivity type are arranged along the second layer between the second layer and the first electrode. The fifth layer of the second conductivity type is provided between the second electrode and the first layer. The sixth and seventh layers are arranged along the fifth layer between the first and fifth layers. The sixth and seventh layers include the first-conductivity-type impurities with first and second surface densities, respectively. The first surface density is greater than the second surface density.
A semiconductor device includes a fin projecting upwardly from a substrate; a gate stack engaging the fin; a gate spacer on a sidewall of the gate stack and in contact with the gate stack; and a dielectric layer on the sidewall of the gate stack and in contact with the gate stack, the dielectric layer being vertically between the fin and the gate spacer, wherein the dielectric layer has a thickness small than the gate spacer.
In an embodiment, a device includes a substrate, a first semiconductor layer that extends from the substrate, and a second semiconductor layer on the first semiconductor layer. The first semiconductor layer includes silicon and the second semiconductor layer includes silicon germanium, with edge portions of the second semiconductor layer having a first germanium concentration, a center portion of the second semiconductor layer having a second germanium concentration, and the second germanium concentration being less than the first germanium concentration. The device also includes a gate stack on the second semiconductor layer, lightly doped source/drain regions in the second semiconductor layer, and source and drain regions extending into the lightly doped source/drain regions.
A semiconductor device is disclosed. The semiconductor device includes a substrate including a semiconductor material. The semiconductor device includes a conduction channel of a transistor disposed above the substrate. The conduction channel and the substrate include a similar semiconductor material. The semiconductor device includes a source/drain region extending from an end of the conduction channel. The semiconductor device includes a dielectric structure. The source/drain region is electrically coupled to the conduction channel and electrically isolated from the substrate by the dielectric structure.
Provided is a semiconductor device including a first n-type transistor comprising a first work function layer, the first work function layer comprising a first underlying layer; and a second n-type transistor comprising a second work function layer, the second work function layer comprising a second underlying layer. The first and second underlying layers each comprises a metal nitride layer with at least two kinds of metals, and a thickness of the first underlying layer is greater than a thickness of the second underlying layer. A method of manufacturing a gate structure for a semiconductor device is also provided.
Disclosed herein are quantum dot devices with trenched substrates, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a substrate having a trench disposed therein, wherein a bottom of the trench is provided by a first material, and a quantum well stack at least partially disposed in the trench. A material of the quantum well stack may be in contact with the bottom of the trench, and the material of the quantum well stack may be different from the first material.
A memory device includes a silicon-germanium source contact layer, an alternating stack of insulating layers and electrically conductive layers located over the silicon-germanium source contact layer, and a memory stack structure vertically extending through the alternating stack. The memory stack structure comprises a memory film and a vertical semiconductor channel that contacts the memory film. The silicon-germanium source contact layer contacts a cylindrical portion of an outer sidewall of the vertical semiconductor channel. Logic circuits for operating the memory elements may be provided on a substrate within a same semiconductor die, or may be provided in another semiconductor die that is bonded to the semiconductor die containing the memory device.
A semiconductor device including a Horizontal Current Bipolar Transistor (HCBT) and methods of manufacture. The device has a semiconductor substrate of a first conductivity type defining a wafer plane parallel to the semiconductor substrate and has a base region and a collector region forming a first metallurgical junction. The device also has an emitter region forming a second metallurgical junction with the base region. A flat portion of the first metallurgical junction and a flat portion of the second metallurgical junction are substantially parallel to each other and close an acute angle with the wafer plane. At least a portion of the base region comprises silicon-germanium alloy or silicon-germanium-carbon alloy.
Provided herein are semiconductor structures that include germanium and have a germanium nitride layer on the surface, as well as methods of forming the same. The described structures include nanowires and fins. Methods of the disclosure include metal-organic chemical vapor deposition with a germanium precursor. The described methods also include using a N2H4 vapor.
A semiconductor structure includes a trunk portion and a branch portion. The trunk portion extends in a first direction. The branch portion is connected to the trunk portion. The branch portion includes a handle portion and a two-pronged portion. The handle portion is connected to the trunk portion and extends in a second direction. The second direction intersects the first direction. The two-pronged portion is connected to the handle portion. A line width of the handle portion is greater than a line width of the two-pronged portion.
The present disclosure relates to semiconductor structures and, more particularly, to heterojunction bipolar transistors (HBTs) with a buried trap rich region and methods of manufacture. The structure includes: a trap rich isolation region embedded within the bulk substrate; and a heterojunction bipolar transistor above the trap rich isolation region, with its sub-collector region separated by the trap rich isolation region by a layer of the bulk substrate.
The present invention discloses an optical system including a light combination unit, a first LED panel and a second LED panel. The first LED panel is located at one side of the light combination unit and configured to emit a first light. The second LED panel is located at another side of the light combination unit and configured to emit a second light. The first LED panel is a monochrome LED panel, and the second LED panel is a double color LED panel. The first LED panel and the second LED panel respectively emit the first light and the second light into the light combination unit, and the light combination unit combines and collimates the first light and the second light along one direction.
A semiconductor device is provided as a back-illuminated solid-state imaging device. The device is manufactured by bonding a first semiconductor wafer with a pixel array in a half-finished product state and a second semiconductor wafer with a logic circuit in a half-finished product state together, making the first semiconductor wafer into a thin film, electrically connecting the pixel array and the logic circuit, making the pixel array and the logic circuit into a finished product state, and dividing the first semiconductor wafer and the second semiconductor being bonded together into microchips.
Provided is an image pickup device, including: a first trench provided between a plurality of pixels in a light-receiving region of a semiconductor substrate, the semiconductor substrate including the light-receiving region and a peripheral region, the light-receiving region being provided with the plurality of pixels each including a photoelectric conversion section; and a second trench provided in the peripheral region of the semiconductor substrate, wherein the semiconductor substrate has a variation in thickness between a portion where the first trench is provided and a portion where the second trench is provided.
An image sensor may be implemented using a stitched image sensor die. The stitched image sensor die may be formed from a step and repeat exposure process using a set of physical tiles in a reticle set. The physical tiles may include a center tile forming pixel circuitry on the image sensor die and peripheral tiles forming non-pixel circuitry on the image sensor die. Each of the physical tiles may be sized based on an integer multiple of a virtual unit tile. As such, the physical tiles may have dimensions that are not required to be an integer multiple of the smallest physical tile. The step and repeat exposure process may use the unit lengths of the virtual unit tile to properly position the die relative to the processing tools.
A semiconductor integrated circuit includes first to fourth transistor arrangement regions. A portion of the third transistor arrangement region is located on a second side in a first direction of the second transistor arrangement region. A portion of the first transistor arrangement region connected to the second transistor arrangement region is sandwiched in the first direction by the second transistor arrangement region and the portion of the third transistor arrangement region. The portion of the first transistor arrangement region is located on a first side in the first direction of the fourth transistor arrangement region. The portion of the third transistor arrangement region connected to the fourth transistor arrangement region is sandwiched in the first direction by the fourth transistor arrangement region and the portion of the first transistor arrangement region.
The present disclosure provides a semiconductor device and a fabrication method thereof. The semiconductor device includes a III-V material layer, a first gate, a second gate, and a first passivation layer. The first gate and the second gate are on the III-V material layer. The first passivation layer is on the first gate. A first activation ratio of an element in the first gate is different from a second activation ratio of the element in the second gate.
A packaging method includes providing a substrate structure, including a core substrate, a plurality of first conductive pads at a first surface of the core substrate, and a plurality of packaging pads at a second surface of the core substrate; and packaging a plurality of semiconductor chips onto the substrate structure at the second surface of the core substrate, including forming a first metal wire to connect with a chip-contact pad of a semiconductor chip, and forming a molding compound on the second surface of the core substrate to encapsulate the plurality of semiconductor chips. One end of the first metal wire connects to the chip-contact pad, and another end of the first metal wire is exposed at the surface of the molding compound. The packaging method further includes forming a first metal pad on the surface of the molding compound to electrically connect with the first metal wire.
Various embodiments of the present disclosure are directed towards an integrated chip (IC). The IC includes a first dielectric structure having first inner sidewalls over an interlayer dielectric (ILD) structure. A second dielectric structure is over the first dielectric structure, where the first inner sidewalls are between second inner sidewalls of the second dielectric structure. A sidewall barrier structure is over the first dielectric structure and extends vertically along the second inner sidewalls. A lower bumping structure is between the second inner sidewalls and extends vertically along the first inner sidewalls and vertically along third inner sidewalls of the sidewall barrier structure. An upper bumping structure is over both the lower bumping structure and the sidewall barrier structure and between the second inner sidewalls, where an uppermost point of the upper bumping structure is at or below an uppermost point of the second dielectric structure.
A semiconductor package including an improved isolation bonding film and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a first die bonded to a package substrate, the first die including vias extending through a substrate, the vias extending above a top surface of the substrate; a first dielectric film extending along a top surface of the package substrate, along the top surface of the substrate, and along sidewalls of the first die, the vias extending through the first dielectric film; a second die bonded to the first dielectric film and the vias; and an encapsulant over the package substrate, the first die, the first dielectric film, and the second die.
There is provided a novel Cu bonding wire that achieves a favorable FAB shape and reduces a galvanic corrosion in a high-temperature environment to achieve a favorable bond reliability of the 2nd bonding part. The bonding wire for semiconductor devices includes a core material of Cu or Cu alloy, and a coating layer having a total concentration of Pd and Ni of 90 atomic % or more formed on a surface of the core material. The bonding wire is characterized in that:
in a concentration profile in a depth direction of the wire obtained by performing measurement using Auger electron spectroscopy (AES) so that the number of measurement points in the depth direction is 50 or more for the coating layer,
a thickness of the coating layer is 10 nm or more and 130 nm or less,
an average value X is 0.2 or more and 35.0 or less where X is defined as an average value of a ratio of a Pd concentration CPd (atomic %) to an Ni concentration CNi (atomic %), CPd/CNi, for all measurement points in the coating layer, and
the total number of measurement points in the coating layer whose absolute deviation from the average value X is 0.3X or less is 50% or more relative to the total number of measurement points in the coating layer.
An integrated circuit chip includes an SOI substrate having a structure in which a bulk substrate, a buried insulating film, and a semiconductor body layer are sequentially stacked, a conductive ion implantation region formed at a position adjacent to the buried insulating film in the bulk substrate, an integrated circuit portion formed on an active surface of the semiconductor body layer, and a penetrating electrode portion arranged at a position spaced apart from the integrated circuit portion in a horizontal direction, the penetrating electrode portion penetrating the semiconductor body layer and the buried insulating layer in a vertical direction, and the penetrating electrode portion connected to the conductive ion implantation region. An integrated circuit package and a display device include the integrated circuit chip.
In some embodiments, the present disclosure relates to an integrated chip that includes bonding structure arranged directly between a first substrate and a second substrate. The first substrate includes a first transparent material and a first alignment mark. The first alignment mark is arranged on an outer region of the first substrate and also includes the first transparent material. The first alignment mark is defined by surfaces of the first substrate that are arranged between an uppermost surface of the first substrate and a lowermost surface of the first substrate. The second substrate includes a second alignment mark on an outer region of the second substrate. The second alignment mark directly underlies the first alignment mark, and the bonding structure is arranged directly between the first alignment mark and the second alignment mark.
Embodiments include a package structure with one or more layers of dielectric material, where an interconnect bridge substrate is embedded within the dielectric material. One or more via structures are on a first surface of the embedded substrate, where individual ones of the via structures comprise a conductive material and have a tapered profile. The conductive material is also on a sidewall of the embedded substrate.
Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a device including tiers of materials located one over another, the tiers of materials including respective memory cells and control gates for the memory cells. The control gates include respective portions that collectively form part of a staircase structure. The staircase structure includes first regions and second regions coupled to the first regions. The second regions include respective sidewalls in which a portion of each of the first regions and a portion of each of the second regions are part of a respective control gate of the control gates. The device also includes conductive pads electrically separated from each other and located on the first regions of the staircase structure, and conductive contacts contacting the conductive pads.
A method includes forming a trench within a dielectric layer, the trench comprising an interconnect portion and a via portion, the via portion exposing an underlying conductive feature. The method further includes depositing a seed layer within the trench, depositing a carbon layer on the seed layer, performing a carbon dissolution process to cause a graphene layer to form between the seed layer and the underlying conductive feature, and filling a remainder of the trench with a conductive material.
Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises a dielectric layer formed over a power rail; a bottom semiconductor layer formed over the dielectric layer; a backside spacer formed along a sidewall of the bottom semiconductor layer; a conductive feature contacting a sidewall of the dielectric layer and a sidewall of the backside spacer; channel semiconductor layers over the bottom semiconductor layer, wherein the channel semiconductor layers are stacked up and separated from each other; a metal gate structure wrapping each of the channel semiconductor layers; and an epitaxial source/drain (S/D) feature contacting a sidewall of each of the channel semiconductor layers, wherein the epitaxial S/D feature contacts the conductive feature, and the conductive feature contacts the power rail.
A semiconductor nanostructure and an epitaxial semiconductor material portion are formed on a front surface of a substrate, and a planarization dielectric layer is formed thereabove. A first recess cavity is formed over a gate electrode, and a second recess cavity is formed over the epitaxial semiconductor material portion. The second recess cavity is vertically recessed to form a connector via cavity. A metallic cap structure is formed on the gate electrode in the first recess cavity, and a connector via structure is formed in the connector via cavity. Front-side metal interconnect structures are formed on the connector via structure and the metallic cap structure, and a backside via structure is formed through the substrate on the connector via structure.
Provided is a coupled semiconductor package including at least two substrate pads; at least one semiconductor chip installed on each of the substrate pads; at least one terminal each of which is electrically connected to each substrate pad and each semiconductor chip; and a package housing covering a part of the at least one semiconductor chip and the at least one terminal, wherein lower surfaces of one or more substrate pads are formed to be electrically connected and lower surfaces of another one or more substrate pads are formed to be electrically insulated. Accordingly, partial insulation may be economically realized without applying an insulating material to a heat sink, when the package is joined to the heat sink.
Provided is a semiconductor package including a lower semiconductor chip including a lower semiconductor substrate, a rear surface protecting layer covering a non-active surface of the lower semiconductor substrate, a plurality of lower via electrodes, and a plurality of rear surface signal pads and a plurality of rear surface thermal pads arranged on the rear surface protecting layer; an upper semiconductor chip including an upper semiconductor substrate, a wiring structure on an active surface of the upper semiconductor substrate, a front surface protecting layer that covers the wiring structure and has a plurality of front surface openings, and a plurality of signal vias and a plurality of thermal vias that fill the front surface openings; and a plurality of signal bumps connecting between the rear surface signal pads and the signal vias and a plurality of thermal bumps connecting between the rear surface thermal pads and the thermal vias.
In an embodiment, a method includes: stacking a plurality of first dies to form a device stack; revealing testing pads of a topmost die of the device stack; testing the device stack using the testing pads of the topmost die; and after testing the device stack, forming bonding pads in the topmost die, the bonding pads being different from the testing pads.
A parameter adjustment method includes an acquisition process and a parameter changing process. The acquisition process acquires, from an inspection apparatus configured to inspect a combined substrate in which the first substrate and the second substrate are bonded by the bonding apparatus, an inspection result indicating a direction and a degree of distortion occurring in the combined substrate. The parameter changing process changes at least one of multiple parameters including at least one of the gap, an attraction pressure of the first substrate by the first holder, an attraction pressure of the second substrate by the second holder or a pressing force on the first substrate by the striker, based on trend information indicating a tendency of a change in the direction and the degree of the distortion when each of the multiple parameters is changed and the inspection result acquired in the acquiring of the inspection result.
A method of processing an object using a plasma processing apparatus is provided. The plasma processing apparatus includes a stage on which the object is placed in a chamber, an outer peripheral member disposed around the stage, and a first power supply configured to apply voltage to the outer peripheral member. The method includes a step of exposing the object to a plasma containing a precursor having a deposition property, while applying voltage from the first power supply to the outer peripheral member. In applying voltage to the outer peripheral member, a status of a deposition film containing carbon that is deposited on the outer peripheral member is monitored, and the voltage applied to the outer peripheral member is controlled based on the monitored status of the deposition film.
A fin-type field-effect transistor device includes a substrate, insulators, gate stacks and dielectric strips. The substrate includes a first doped region, a second doped region, third doped blocks located above the first doped region and fourth doped blocks located above the second doped region, and fins located above the third doped blocks and the fourth doped blocks, wherein doping concentrations of the third doped blocks are lower than a doping concentration of the first doped region, and doping concentrations of the fourth doped blocks are lower than a doping concentration of the second doped region. The insulators are disposed on the third doped blocks and the fourth doped blocks of the substrate and covering the fins. The dielectric strips are disposed in between the fins, and in between the third doped blocks and the fourth doped blocks. The gate stacks are disposed over the fins and above the insulators.
Speed of plasma etching is regulated in regions prone to over-etching by providing an etch resistant structure, such as a metal saw bow, in the region. By adjusting dimensions, such as the length and width of the saw bow legs and an area defined by the saw bow legs, as well as a shape of the etch region through techniques such as chamfering, plasma etch speed in the region can be controlled with an intent to match the speed of etching in non-over-etched regions.
A semiconductor memory fabrication method and the semiconductor memory are involved in semiconductors production and fabrication processes. The semiconductor memory manufacturing method of the present invention includes the following steps: 1) Using a semiconductor integrated circuit manufacturing process, a basic memory module array being fabricated on a wafer where the basic memory modules have IO circuit interfaces; 2) Dicing the wafer to obtain memory chips; 3) Packaging the separated memory chip. In step 1), the IO circuit interfaces of the basic memory modules adjacent in the orthogonal directions are connected by interconnection lines; and according to the predetermined memory capacity, step 2) is to determine the number of basic memory modules contained in the chip and the position of the edge line of the memory chip so that the interconnections across the edge line are cut off so to separate the entire memory chip from the wafer by dicing along the edge line of the memory chip. Using the technique of the present invention, memory chips of multiple different capacities can be produced with solely one set of masks or reticles, which greatly reduces the manufacture cost.
A semiconductor device includes active regions, a gate electrode, respective drain regions, respective source regions, a drain contact structure, a source contact structure, and a gate contact structure. The active regions extend linearly in parallel on a substrate. The gate electrode crosses the active regions. The drain regions are on and/or in the active regions on a first side of the gate electrode. The respective source regions are on and/or in the active regions on a second side of the gate electrode. The drain contact structure is on multiple drain regions. The source contact structure is on multiple source regions. The gate contact structure is on the gate electrode between the drain and source contact structures. The gate contact structure includes a gate plug and an upper gate plug directly on the gate plug. A center of the gate contact structure overlies only one of the active regions.
A method includes forming a metal seed layer over a first conductive feature of a wafer, forming a patterned photo resist on the metal seed layer, forming a second conductive feature in an opening in the patterned photo resist, and heating the wafer to generate a gap between the second conductive feature and the patterned photo resist. A protection layer is plated on the second conductive feature. The method further includes removing the patterned photo resist, and etching the metal seed layer.
A lanthanoid element is included in a part of a material of a member for an electrostatic chuck configured to suck a target object by using an electrostatic force. When electromagnetic waves in a wavelength region shorter than 400 nm are irradiated, the member emits light in a wavelength region different from the wavelength region.
A method for detecting positions of wafers includes: rotating a rotation table with a wafer thereon in a first direction at a first speed; detecting a contour of the wafer rotating in the first direction at the first speed to provide contour data; rotating the rotation table in a second direction at a second speed when an aiming feature of the wafer passes the detector in the first direction at the first speed; detecting the contour of the wafer rotating in the second direction at the second speed to provide new contour data; and stopping the rotation of the rotation table and the detection of the wafer according to an accumulation of contour data and corresponding rotation angles, to estimate an eccentric position of the wafer and a position of the aiming feature when the aiming feature passes the detector in the second direction at the second speed.
An apparatus and method for measuring loop height of overlapping bonded wires, interconnecting the pads of a single or stacked silicon chips to the pads of a substrate taking the steps of: focussing of an optical assembly at multiple points of the bond wire including overlapping bond wires, capturing an image of the bond wire at each of the predetermined focused points; calculating the height of each point of the wire with respect to a reference plane; and tabulating the height data using the X, Y and Z coordinates.
The present invention provides a wafer notch leveling device, which comprises a body, a first rotating portion, a positioning portion, a power portion, and a control unit. The body has a support portion and a pivot portion is provided at each terminal of the body, the pivot portion pivotally connects a plurality of supporting arms. The first rotating portion and the positioning portion are electrically connected with the power portion. The power portion is electrically connected with the control unit. Especially, when a plurality of wafers are placed on the support portion and fixed, the first rotating portion is electrically connected with the power portion through the control unit to drive the plurality of wafers to rotate the wafers, a notch on the wafer is leveled through the positioning portion.
Examples disclosed herein are directed to a method and apparatus for determining a position of a ring within a process kit. In one example, a sensor assembly for a substrate processing chamber is provided. The sensor assembly includes a housing having a top surface, a bottom surface opposite the top surface, and a plurality of sidewalls connecting the top surface to the bottom surface. The housing also has a recess in the top surface, the recess forming an interior volume within the housing. The sensory assembly includes a bias member, and a contact member disposed on the bias member. The bias member and contact member are disposed within the recess. A sensor is configured to detect a displacement of the contact member. The displacement of the contact member corresponds to a relative position of an edge ring.
Aspects of the present disclosure provide a method for forming a chiplet onto a semiconductor structure. For example, the method can include providing a first semiconductor structure having a first circuit and a first wiring structure formed on a first side thereof. The method can further include attaching the first side of the first semiconductor structure to a carrier substrate. The method can further include forming a stress film on a second side of the first semiconductor structure. The method can further include separating the carrier substrate from the first semiconductor structure. The method can further include cutting the stress film and the first semiconductor structure to define at least one chiplet. The method can further include bonding the at least one chiplet to a second semiconductor structure having a second circuit and a second wiring structure such that the second wiring structure is connected to the first wiring structure.
Embodiments of the present disclosure generally relate to methods of depositing carbon film layers greater than 3,000 Å in thickness over a substrate and surface of a lid of a chamber using dual frequency, top, sidewall and bottom sources. The method includes introducing a gas to a processing volume of a chamber. A first radiofrequency (RF) power is provided having a first frequency of about 40 MHz or greater to a lid of the chamber. A second RF power is provided having a second frequency to a bias electrode disposed in a substrate support within the processing volume. The second frequency is about 10 MHz to about 40 MHz. An additional third RF power is provided having lower frequency of about 400 kHz to about 2 MHz to the bias electrode.
An exemplary breath analysis system may include a sampling chamber having a molecule collector disposed therein. The molecule collector may be configured such that volatile organic compounds (VOCs) present in a breath sample introduced to the sampling chamber adhere to the molecule collector. A heating element may ramp heat within the sampling chamber, causing release of at least a portion of the VOCs adhered to the molecule collector, lighter and/or less bound VOCs first, heavier and/or more strongly bound VOCs later. An analysis device (e.g., a mass spectrometer or a Terahertz (THz) spectrometer) may identify one or more target VOCs from among at least the portion of the VOCs released from the molecule collector and generate an output representative of the identified target VOC(s). The output may include information that quantitates a concentration of the target VOC(s) with respect to a source of the breath sample.
A housing includes a first space, a second space, a first hole, a second hole, and an arc extinguishing member. A fixed contact and a movable contact are arranged in the first space. The second space is partitioned from the first space. The first hole communicates the first space and the second space. The second hole communicates the second space with a space outside the second space. The arc extinguishing member releases an arc extinguishing gas into the first space. The second hole has a smaller opening area than the first hole.
An electromagnetic device includes a spool including a cylindrical body portion in which a through hole extending to a first direction is provided, a coil wound around the body portion, an iron core disposed in a through hole of the body portion, a yoke including a first member and a second member, the first member being connected to the iron core and the second member extending from the first member along an outer peripheral surface of the coil, and a movable iron piece, which has a plate shape, including a bent portion in a middle thereof. The yoke includes at least one positioning projection provided in a middle of the free end in the second direction. The movable iron piece includes a positioning recessed portion that accommodates and positions the positioning projection, the positioning recessed portion being provided in a middle between the pair of rotation supporting points.
The present teachings provide for a device with a membrane and an underlying switch, an underlying switch actuator, or both that has a unique tactile pattern that is felt through the membrane when the membrane is aligned with the switch, switch actuator, or both, corresponding to the electrical state of the device. The membrane, the switch, the switch actuator or a combination thereof can be repositioned from a first position to a second position so that a different tactile feel is present through the membrane corresponding to a second electrical state.
A residual current device includes an insulating housing, an electromagnetic induction module, a leakage current detecting module and an electromagnetic shielding structure. The insulating housing includes a base and a lid. The electromagnetic induction module is disposed in the base. The electromagnetic induction module includes a core base and an iron core. The leakage current detecting module is disposed in the base. The leakage current detecting module includes a circuit board assembly, a detecting circuit disposed on the circuit board assembly and a lead frame electrically connected to the circuit board assembly. The electromagnetic shielding structure is disposed in the base and covers the leakage current detecting module. The effect of preventing electromagnetic interference is achieved.
A sensor coil assembly comprises a positioning sensor comprising a wound coil formed by a first conductive wire segment wound around a longitudinal axis. The first conductive wire segment can include a first coil end and a second coil end. A second conductive wire segment can extend from the first coil end of the first conductive wire segment. The second conductive wire segment can be wound around a first bobbin. A third conductive wire segment can extend from the second coil end of the first conductive wire segment. The third conductive wire segment can be wound around a second bobbin.
A coil component includes a body, an insulating substrate embedded in the body and including an insulating resin, and first and second substrate protection layers covering respective surfaces of the insulating substrate to protect the insulating substrate and including a ceramic. A coil portion includes first and second coil patterns respectively disposed on the first and second substrate protection layers. Each of the first and second coil patterns includes a first conductive layer, disposed on the respective first or second substrate protection layer, and a second conductive layer disposed on the first conductive layer to expose a side surface of the first conductive layer.
An electric device, for example a track transformer, connects to a high-voltage line. The electric device has a magnetizable core, at least one winding which is arranged in the vicinity of the core, and a housing which is filled with an insulating fluid and in which at least one winding is arranged. The core is arranged at least partly outside of the housing. In order to allow a stable mounting of a core formed of two halves, the core is arranged completely between two opposing pressing plates, between which tension elements for clamping the core extend.
An electronic component includes a composite body composed of a composite material of a resin and a magnetic metal powder and a metal film disposed on an outer surface of the composite body. The magnetic metal powder contains Fe. The metal film mainly contains Ni and is in contact with the resin and the magnetic metal powder.
In one aspect, there is disclosed a solenoid having a bobbin with a core wire positioned about the bobbin to form a coil. A power supply wire is connected an end of the core wire and a frame is connected to the bobbin. An overmolded housing surrounds the core wire, the frame and a portion of the power supply wire.
An input device comprising a processor(s), an input element, an electropermanent magnet (EPM) assembly including: a permanent magnet operable to generate a magnetic field; and a magnetizing assembly configured to set a magnetic field generated by the permanent magnet, a first ferromagnetic element, and a second ferromagnetic element. The first ferromagnetic element is configured to part and move away from the second ferromagnetic element as the input element is depressed. When the EPM assembly magnetizes the permanent magnet to a first polarity, the first and second ferromagnetic elements are magnetically attracted to each other and provide an attracting that magnetically opposes the first and second ferromagnetic elements from parting, and when the EPM assembly magnetizes the permanent magnet to a second polarity, the first and second ferromagnetic elements are not magnetically attracted to each other and do not magnetically oppose the first and second ferromagnetic elements from parting.
A high temperature superconductor (HTS) cable comprising at least one coil form comprising a helical channel formed on an exterior surface of the coil form and the helical channel extending at least partially along an axial length of the coil form and a plurality of high temperature superconductor (HTS) tape layers positioned within the helical channel of the coil form. A method for operating a winding machine to produce a high temperature superconductor (HTS) cable comprising a plurality of coil forms comprising a helical channel formed on an exterior surface of the coil form.
To provide magnetoplumbite-type hexagonal ferrite particles represented by Formula (1) and having a single crystal phase, and the application. In Formula (1), A represents at least one metal element selected from the group consisting of Sr, Ba, Ca, and Pb, and x satisfies 1.5≤x≤8.0.
AFe(12−x)AlxO19 Formula (1)
An organic resistor is provided. The organic resistor includes a rubber substrate and a conducting film disposed over the rubber substrate. The conducting film includes a composite of carbon nanotubes and a nickel phthalocyanine complex dispersed in one or more edible oil(s). The present disclosure also relates to a method of making the organic resistor using rubbing-in technology. The organic resistor of the present invention is environmentally friendly and ecologically clean.
Disclosed herein is a transport system, comprising an electrified cable system, a carriage supported by a non-electrified static cable, an electrical drive system incorporated into the carriage, the electrical drive system being utilized to move the carriage along the non-electrified static cable, a transconnector configured to supply electrical power to the carriage, and a power distribution panel. Corresponding methods of making and using the system also are disclosed.
A guarded coaxial cable assembly including at least a pair of conductors, one or more rails, and a jacket covering these parts such as a first rail extending alongside two nearby conductors, the rail and the conductors embedded in an outer electrically insulating jacket, the outer jacket having a pair of generally opposed bearing surfaces for bearing transverse loads, the rail operative to reduce outer jacket deformations resulting from transverse loads applied to the bearing surfaces; and, the orientation of the rail and the conductors within the outer jacket operative to limit conductor or conductor jacket deformations resulting from transverse loads applied to the bearing surfaces.
A thermionic (TI) power cell includes a heat source, such as a layer of radioactive material that generates heat due to radioactive decay, a layer of electron emitting material disposed on the layer of radioactive material, and a layer of electron collecting material. The layer of electron emitting material is physically separated from the layer of electron collecting material to define a chamber between the layer of electron collecting material and the layer of electron emitting material. The chamber is substantially evacuated to permit electrons to traverse the chamber from the layer of electron emitting material to the layer of electron collecting material. Heat generated over time by the layer of radioactive material causes a substantially constant flow of electrons to be emitted by the layer of electron emitting material to induce an electric current to flow through the layer of electron collecting material when connected to an electrical load.
A device that will enable material to be irradiated as needed to produce a desired transmutation product inside the core of a nuclear reactor. The device provides a means for monitoring neutron flux in the vicinity of the material being irradiated to allow determination of the amount of transmutation product being produced. The device enables the irradiated material to be inserted into the reactor and held in place at desired axial positions and to be withdrawn from the reactor when desired without shutting down the reactor. The majority of the device may be re-used for subsequent irradiations. The device also enables the simple and rapid attachment of unirradiated target material to the portion of the device that transmits the motive force to insert and withdraw the target material into and out of the reactor and the rapid detachment of the irradiated material from the device for processing.
An impact amelioration system for nuclear fuel storage components in one embodiment includes a fuel storage canister and outer cask receiving the canister. The canister is configured for storing spent nuclear fuel or other high level radioactive waste. A plurality of impact limiter assemblies are disposed on the bottom closure plate of the cask at the canister interface. Each impact limiter assembly comprises an impact limiter plug frictionally engaged with a corresponding plug hole formed in the cask closure plate. The canister rests on tops of the plugs, which may protrude upwards beyond the top surface of the bottom closure lid. The plugs and holes may mating tapered and frictionally engaged surfaces. During a cask drop event, the canister drives the plugs deeper into the plug holes and elastoplastically deform to dissipate the kinetic impact energy and protect the structural integrity of the canister and its contents.
A system, method and apparatus for a Digital Professional Business Card. The digital professional business card provides a better way of communication between healthcare providers and patients. With digital application communication through a smart phone, there are no more lost business cards, forgotten verbal communication. Establishing contact is instantaneous and requires minimum number of steps. In addition, it provides a for expanded two way secure communication platform.
Methods and systems may provide for receiving a physiological signal from a sensor configuration associated with a mobile device. A qualitative analysis may be conducted for each of a plurality of noise sources in the physiological signal to obtain a corresponding plurality of qualitative ratings. In addition, at least the plurality of qualitative ratings may be used to determine whether to report the physiological signal to a remote location. In one example, a quantitative analysis is conducted for each of the plurality of noise sources to obtain an overall quality level, wherein the overall quality level is also used to determine whether to report the physiological signal to the remote location.
Automated systems and methods are presented for retrospectively analyzing clinical trial data. A plurality of image derived from biological samples of patients in a cohort population are accessed. Image features are computed based on the plurality of images. A diagnostic feature metric is derived based on the computed image features. A cut point value is determined by applying a statistical minimization method using the derived diagnostic feature metric and patient outcome data from the cohort population, in which the cut point value identifies a patient in the cohort population as positive or negative for a diagnostic test.
An ultrasound diagnostic apparatus includes: an image generator that generates ultrasound image data based on a reception signal obtained from a moving ultrasound probe; an evaluator that evaluates an index regarding suitability of combining a plurality of pieces of ultrasound image data generated by the image generator and generates an evaluation result; and a combiner that selects ultrasound image data according to the generated evaluation result and combines the ultrasound image data to generate panoramic image data.
Embodiments of the invention include a cloud-assisted rehabilitation system for assisting in the rehabilitation of musculoskeletal conditions, and a method for rehabilitating patients having musculoskeletal conditions. A rehabilitation portal can aggregate and de-identified musculoskeletal rehabilitation information that is gathered from various intelligent musculoskeletal rehabilitation apparatuses attached to a group of patients. The rehabilitation portal can facilitate crowd communication among the group of patients. A particular rehabilitation experience can be compared with other rehabilitation experiences and data from other patients. The rehabilitation portal can also facilitate crowd communication among a group of healthcare professionals so that the plurality of healthcare professionals can communicate with each other and compare information regarding different rehabilitation experiences based at least on the aggregated de-identified musculoskeletal rehabilitation information.
The present invention provides group performance monitoring systems and methods. In one exemplary embodiment, a group monitoring device includes a display configured to display, during an athletic activity, a plurality of individual performance metrics relating to a plurality of individuals engaged in the athletic activity, each individual performance metric relating to one of the plurality of individuals; and an input to manipulate the display.
According to one embodiment, a medical information system comprises processing circuitry. The processing circuitry collects social behavior information about a measurement target person. The processing circuitry identifies a social relationship between the measurement target person and others, and a behavior pattern of the measurement target person, by using the collected social behavior. The processing circuitry quantitatively measures a sociality item of the measurement target person by using the identified social relationship and the identified behavior pattern.
Methods, systems, and devices for testing of multi-level signaling associated with a memory device are described. A tester may be used to test one or more operations of a memory device. The memory device may be configured to communicate data using a modulation scheme that includes three or more symbols. The tester may be configured to communicate data using a modulation scheme that includes three or fewer symbols. Techniques for testing the memory device using such a tester are described.
Methods, systems, and devices for power regulation for memory systems are described. In one example, a memory system, such as a memory module, may include a substrate, and an input/output component coupled with the substrate and operable to communicate signals with a host system. The memory system may also include one or more memory devices coupled with the substrate and the input/output component and operable to store data for the host system. A memory device of the one or more memory devices may include a power management component in its package with one or more memory dies. The power management component may be coupled with the one or more memory dies, and feedback component, and may be operable to provide one or more supply voltages for the one or more memory dies based on one or more voltages associated with the memory system.
Memories having a controller configured to perform methods during programming operations including apply a first voltage level to a data line selectively connected to a selected memory cell selected, apply a lower second voltage level to a select gate connected between the data line and the memory cell, decrease the voltage level applied to the data line from the first voltage level to a third voltage level while continuing to apply the second voltage level to the select gate, increase the voltage level applied to the select gate from the second voltage level to a fourth voltage level after the voltage level of the data line settles to the third voltage level, and apply a programming voltage to the memory cell after increasing the voltage level applied to the select gate to the fourth voltage level.
Methods, systems, and devices for dynamic power distribution for stacked memory are described. A stacked memory device may include switching components that support dynamic coupling between a shared power source of the memory device and circuitry associated with operating memory arrays of respective memory dies. In some examples, such techniques include coupling a power source with array circuitry based on an access activity or a degree of access activity for the array circuitry. In some examples, such techniques include isolating a power source from array circuitry based on a lack of access activity or a degree of access activity for the array circuitry. The dynamic coupling or isolation may be supported by various signaling of the memory device, such as signaling between memory dies, signaling between a memory die and a central controller, or signaling between the memory device and a host device.
A refresh circuit includes: a signal generation module, configured to generate an inversion signal and a carry signal based on a refresh command; an adjustment unit, configured to generate, if a first refresh signal and a second refresh signal are generated based on the refresh command, an inversion adjustment signal according to the inversion signal, and generate, if only the first refresh signal is generated based on the refresh command, the inversion adjustment signal according to an inversion signal corresponding to a first refresh signal generated based on a current refresh command, and generate the inversion adjustment signal only according to an inversion signal corresponding to a second refresh signal generated based on a next refresh command; and a counting module, configured to generate a first output signal and a second output signal, and invert the first output signal based on the inversion adjustment signal.
A refresh circuit includes signal selector configured to select one of normal and redundant word line logical addresses as output, output signal of which is designated as first logical address; row address latch connected to output terminal of signal selector and configured to output row hammer address and row hammer flag signal according to first logical address; seed arithmetic unit connected to output terminal of row address latch and configured to generate seed address according to row hammer address; logical arithmetic unit connected to output terminal of seed arithmetic unit and configured to obtain row hammer refresh address according to seed address, row hammer refresh address is adjacent physical address of seed address; and pre-decode unit connected to output terminal of logical arithmetic unit and configured to receive row hammer refresh address, and convert it into physical address to be used by memory array of memory to perform refresh operation.
Methods of operating a memory device are disclosed. A method may include receiving a write command, and in response to the write command, performing a write operation without precharging a local input/output line subsequent to receipt of the write command and prior to performing the write operation. Another method may include receiving a read command, performing a read operation in response to the read command, and receiving an additional command without precharging the local input/output line subsequent to performing the read operation and prior to receiving the additional command. Memory devices and systems are also disclosed.
A memory device includes a local input/output circuit and a main input/output circuit. The local input/output circuit is configured to generate a first local write signal based on a first global write signal and a second global write signal, and configured to transmit the first local write signal to a plurality of first bit lines. The main input/output circuit include a first latch and logic elements. The first latch is configured to generate a first bit write mask signal based on a clock signal. The logic elements are configured to generate the first global write signal and the second global write signal based on the clock signal and the first bit write mask signal.
A data storage device includes at least one data storage disc having at least one data storage surface, and at least one read head configured to communicate with the at least one data storage surface. The data storage device also includes a controller communicatively coupled to the at least one read head. The controller is configured to determine a fly height for the at least one read head over the at least one data storage surface as a function of a read workload associated with the at least one data storage surface or as a function of an ability to satisfy a read request to the at least one data storage surface on a first read attempt.
There are provided: an aluminum alloy substrate for a magnetic disk, the aluminum alloy substrate including an aluminum alloy including 0.4 to 3.0 mass % of Fe and the balance of Al and unavoidable impurities, in which second phase particles having a longest diameter of 0.5 μm or more and less than 2.0 μm are dispersed at a distribution density of 5000 particles/mm2 or more; a method for producing the same; and a magnetic disk using the aluminum alloy substrate for a magnetic disk.
A first device obtains, from the array, several audio signals and processes the audio signals to produce a speech signal and one or more ambient signals. The first device processes the ambient signals to produce a sound-object sonic descriptor that has metadata describing a sound object within an acoustic environment. The first device transmits, over a communication data link, the speech signal and the descriptor to a second electronic device that is configured to spatially reproduce the sound object using the descriptor mixed with the speech signal, to produce several mixed signals to drive several speakers.
Some speech processing systems may handle some commands on-device rather than sending the audio data to a second device or system for processing. The first device may have limited speech processing capabilities sufficient for handling common language and/or commands, while the second device (e.g., an edge device and/or a remote system) may call on additional language models, entity libraries, skill components, etc. to perform additional tasks. An intermediate data generator may facilitate dividing speech processing operations between devices by generating a stream of data that includes a first-pass ASR output (e.g., a word or sub-word lattice) and other characteristics of the audio data such as whisper detection, speaker identification, media signatures, etc. The second device can perform the additional processing using the data stream; e.g., without using the audio data. Thus, privacy may be enhanced by processing the audio data locally without sending it to other devices/systems.
A method of authenticating a speech signal in a first device comprises receiving a speech signal, and performing a live speech detection process to determine whether the received signal represents live speech. The live speech detection process generates a live speech detection output. A certificate is formed by encrypting at least the live speech detection output. The received signal, and the certificate, are transmitted to a separate second device.
A personal information assistant computing system may include a user computing device having a processor and a non-transitory memory device storing instructions. The personal information assistant may receive a user accessible input as a natural language communication from the user, which may be analyzed by a personal information assistant to determine a task to be performed by the virtual information assistant. The personal information assistant may be personalized to the user using encrypted user information. The personal information assistant communicates with a remote computing system in performance of a computer-assisted task, wherein the first personal information assistant interacts as a proxy for the user in response to at least one response received from the remote computing system. The personal information assistant may communicate the results of the task to the user via a user information screen and/or an audio device.
Techniques for intelligently selecting a component to execute with respect to a natural language user input are described. A natural language processing (NLP) system may receive first data representing a natural language input. The NLP system may determine first and second scores representing first and second confidences that first and second components are to be invoked to perform actions responsive to the natural language input, respectively. Based on the first and second scores, the NLP system may determine further information is needed to determine which of the first or second component is to be invoked. The NLP system may query a user for the further information. Based on the further information, the NLP system may determine third and fourth scores representing third and fourth confidences that the first and second components are to be invoked to perform actions responsive to the natural language input, respectively. The NLP system may determine the third score is greater than the fourth score and, based thereon, cause the first component to perform an action responsive to the original natural language input.
A method for providing a context awareness service is provided. The method includes defining a control command for the context awareness service depending on a user input, triggering a playback mode and the context awareness service in response to a user selection, receiving external audio through a microphone in the playback mode, determining whether the received audio corresponds to the control command, and executing a particular action assigned to the control command when the received audio corresponds to the control command.
A low-delay hybrid noise reduction system includes a reference audio receiving device, an error audio receiving device, an audio output device, and an audio processing device. The audio processing device includes a feedforward noise reduction filter module, a feedback noise reduction filter module, and a mixer. The feedforward noise reduction filter module includes a feedforward least mean squares (LMS) filter, a low-stage finite impulse response (FIR) filter, and 1st to Nth-stage biquad filters. The 1st to Nth-stage biquad filters is set on the input end of the low-stage finite impulse response filter to perform low-delay filtering on the reference source audio signal received and outputs to the low-stage FIR filter so as to output the feedforward noise reduction signal through the low-stage FIR filter.
Methods and apparatus provide a picture-in-picture (PIP) overlay window on a single physical monitor by displaying a first swap chain of the single physical monitor, reporting to an operating system (OS), a display level request for a fake connection to a non-existent second monitor, and displaying on the single physical monitor a virtual display defined by a second swap chain of the non-existent second monitor, as the PIP overlay window on the displayed content of the first swap chain on the single physical monitor.
Aspects of the present invention relate to providing see-through computer display optics with improved content presentation. The see-through computer display includes an ambient light sensor adapted to measure environmental scene light in an area that forms the background for digital content presented in the see-through computer display, and a processor adapted to invert a color channel parameter of the digital content based on data from the ambient light sensor.
A display panel and a display device are provided. The display panel includes a data driving unit provided a specific sequence of polarities and complementary high/low level for color shift compensation from a 1st terminal to a 16th terminal in each cycle unit to solve an issue of liquid crystal panel flicker, crosstalk, etc.
A variety of methods for driving electro-optic displays so as to reduce visible artifacts are described. Such methods includes driving an electro-optic display having a plurality of display pixels and controlled by a display controller, the display controller associated with a host for providing operational instructions to the display controller, the method may include updating the display with a first image, updating the display with a second image subsequent to the first image, processing image data associated with the first image and the second image to identify display pixels with edge artifacts and generate image data associated with the identified pixels, storing the image data associated pixels with edge artifacts at a memory location, and initiating a waveform to clear the edge artifacts.
A display apparatus includes a display panel, a driving controller, and a data driver. The display panel is configured to display an image based on input image data. The driving controller is configured to determine whether the input image data include a display quality deteriorating pattern. The driving controller is configured to determine a first compensation value for compensating a first area disposed at a first side of a main area of the display quality deteriorating pattern and a second compensation value for compensating a second area disposed at a second side of the main area opposite to the first side of the main area, according to a position of the main area. The data driver is configured to apply a data voltage to the display panel using the first compensation value and the second compensation value.
A gate driving circuit and a display device including the same are disclosed. The gate driving circuit includes signal transmitters receiving a start pulse, a shift clock, a charge/discharge clock, a back-bias clock, a high-potential driving voltage, and a low-potential reference voltage, and connected in a cascade structure. An Nth (N is a positive integer) signal transmitter of the signal transmitters includes a first control node; a second control node; a first controller controlling charging and discharging of the first control node by using at least one transistor to which the back-bias clock is inputted; a second controller controlling charging and discharging of the second control node; a first output buffer outputting a carry pulse in response to voltages of the first and second control nodes; and a second output buffer outputting a gate pulse.
A data driving circuit includes: a resistor string in which a plurality of resistors are connected in series; and a plurality of data channels connected to a high voltage node, intermediate voltage nodes, and a low voltage node of the resistor string and configured to convert a digital data signal into an analog data voltage. Each of the plurality of data channels includes: a main digital-to-analog converter connected to the high voltage node, the intermediate voltage nodes, and the low voltage node, a multiplier connected to an output terminal of the main digital-to-analog converter, a sub digital-to-analog converter connected to some of the high voltage node, the intermediate voltage nodes, and the low voltage node, and a voltage synthesizer connected to an output terminal of the multiplier and an output terminal of the sub digital-to-analog converter.
An e-paper display apparatus including an e-paper display panel is provided. The e-paper display panel includes a plurality of pixel circuits arranged in an array. Each of the pixel circuits includes a transistor device, a storage capacitor and a pixel capacitor. A data voltage is configured to drive the storage capacitor and the pixel capacitor, so as to drive the e-paper display panel to display image. The transistor device is an oxide thin-film transistor. An absolute value of the data voltage is greater than or equal to 20 voltages.
A method for eliminating horizontal crosstalk and a system for adjusting a common electrode voltage are provided. The method for eliminating the horizontal crosstalk includes the followings. First brightness values of a first test image corresponding to different common electrode voltages, second brightness values of a second test image corresponding to different common electrode voltages, and flicker values of a third test image corresponding to different common electrode voltages are obtained respectively. A brightness difference between a corresponding first brightness value and a corresponding second brightness value is calculated and a first-difference common electrode voltage corresponding to a minimum difference is obtained. A second-difference common electrode voltage corresponding to a minimum flicker value is obtained. A mean of the first-difference common electrode voltage and the second-difference common electrode voltage is taken as a target common electrode voltage.
An exemplary indicator mechanism is configured for use with a door closer including a body and an adjustment screw. The indicator mechanism generally includes an indicator, at least one indicium, and a cycloidal drive. The cycloidal drive is configured to selectively align the indicator and the at least one indicium in response to rotation of the adjustment screw to thereby indicate an operating characteristic of the door closer.
A display device includes a first rotation member configured to rotate, a second rotation member configured to rotate, the second rotation member being spaced apart from the first rotation member, a conveyance member that is extended between the first rotation member and the second rotation member, is configured to be conveyed between the first rotation member and the second rotation member in accordance with respective rotations of the first rotation member and the second rotation member, and has an inner surface and an outer surface, an abutting movement member that is disposed between the first rotation member and the second rotation member, and is configured to move to cause the conveyance member to be partially pushed up while being abutted against the inner surface, and a display member having flexibility that is attached to the outer surface, and displays an image using an organic light emitting phenomenon.
The disclosure discloses a bionic digestive tract as well as a preparation method and application thereof, belonging to the field of bionic technologies and the field of biological technologies. The bionic digestive tract of the disclosure is prepared by mixing a base material (one or more of silica gel, latex and hydrogel) and auxiliary materials (silicone oil and a curing agent) in a certain mass ratio (the mass ratio of the base material to the silicone oil to the curing agent is 100:(0.5 to 10):(0.5 to 3.5)). The simulation performance of the bionic digestive tract is excellent, has strong consistency with a true human digestive tract in terms of performance, structure and function, can simulate the true states of food, drugs and microorganisms in a digestive system, and has great application prospects in the research process of food and drugs.
An incident simulation system supports an incident exercise in a virtual environment. The incident simulation system accesses a simulation plan defining an incident within a theater of operation. The incident simulation system simulates the incident exercise by displaying, to a participant in the incident exercise, images representing what the participant would see within the theater of operation as the participant moves within the theater of operation. The incident simulation system further simulates the incident by generating incident data indicating effects of the incident at target locations and at target times as the participant moves within the theater of operation. The incident simulation system further simulates the incident by displaying to the participant images representing the user experience that a detector would provide based on the generated incident data.
A computer-implemented method for determining a quality of driving of a vehicle is presented. Information indicating at least one driving condition may be received from at least one driving condition information indicating device. The at least one driving condition may be different from each of a plurality of driving metrics, and may affect a relationship between the quality of driving and at least one of the plurality of driving metrics. Information indicating the at least one driving metric may be received. At least one indication of the quality of driving of the vehicle may be determined based on the information indicating the at least one driving metric and the received information from the at least one driving condition information indicating device. The at least one indication of the quality of driving may be provided to at least one of the driver, a driving instructor, or an insurance provider.
Systems for simulating joining operations, such as welding, are disclosed. In some examples, a system may use a mobile device for conducting welding simulations, such as for purposes of training. In some examples, the system may additionally, or alternatively, use modular workpieces. In some examples, the system may additionally, or alternatively, conduct the welding simulation based on one or more selected pieces of welding equipment.
A screen overlay for a personal electronic device coupled with an educational application launched on the device provides a work surface for engaging in fluidic based chemistry experiments while shielding the device from the liquid used for the experiments. The screen overlay has liquid encapsulating regions for retention of a pooled liquid deposited on the overlay, and is transmissive of touch signals to a touch screen on the device. An educational application executing on the device renders predetermined regions on the device display that are coordinated with the fluid retention regions. A liquid deposition vessel such as a dropper has a conductive outer surface for engaging a user's grasp, and a wire or conductor is adapted to extend through the pooled liquid for contact with the screen overlay. The screen overlay is transmissive of capacitance signals emanating from the user for indicating fluidic presence to the educational application on the device.
Vertical resolution and/or vertical accuracy of terrain elevation data near an aircraft runway is adjusted by obtaining local terrain data, yielding a first elevation value for a query location. A processor receptive of the first elevation value computes plane equations based on a predetermined standard model adapted to geometrically conform to the aircraft runway, yielding a second elevation value for the query location. The processor selectively uses the first and second elevation values to generate an adjusted elevation value that is supplied to a terrain avoidance and warning system.
Flight plan implementation, generation, and management are facilitated. An example method includes receiving flight plan information including a flight route and a listing of base stations, connecting to a first base station on the listing, determining a first transition point between the first base station and a second base station on the listing based on the flight route, determining whether the first transition point has been reached, maintaining the connection with the first base station when the first transition point has not been reached, transitioning the connection from the first base station to the second base station when the first transition point has been reached, and/or dropping signals received from base stations not on the listing.
Systems and methods may be used for monitoring and identifying failure in flight management systems. For example, a method may include: calculating, using a first flight management system, a first value of a guidance command for controlling an aircraft for an RNP AP procedure; receiving a second value of the guidance command from a second flight management system; comparing the first value with the second value to determine whether the first value matches the second value; upon determining that the first value does not match the second value, using a flight management system monitor to determine, from the first flight management system and the second flight management system, a flight management system that has computed a correct value of the guidance command; and generating a message indicating that the determined flight management system is to be used to guide the aircraft.
Disclosed is a method for controlling stable flight of an unmanned aircraft, comprising the following steps: acquiring real-time flight operation data of the aircraft itself by means of an attitude sensor, a position sensor and an altitude sensor mounted to the unmanned aircraft, performing corresponding analysis on a kinematic problem of the aircraft by a processor mounted thereto, and establishing a dynamics model of the aircraft (S1); designing a controller of the unmanned aircraft according to a multi-layer zeroing neurodynamic method (S2); solving output control quantities of motors of the aircraft by the designed multi-layer zeroing neural network controller using the acquired real-time operation data of the aircraft and target attitude data (S3); and transferring solution results to a motor governor of the aircraft, and controlling powers of the motors according to a relationship between the control quantities solved by the controller and the powers of the motors of the multi-rotor unmanned aircraft, so as to control the motion of the unmanned aircraft (S4). Based on the multi-layer zeroing neurodynamic method, a correct solution to the problem can be approached rapidly, accurately and in real time, and a time-varying problem can be significantly solved.
A system for determining a dispatch includes an input interface, a processor, and an output interface. The input interface is to receive a request for a first pickup including a first pickup location and a first destination. The processor is configured to determining a driver to dispatch to the first pickup location. The output interface is to provide a first pickup indication to the driver to go to the first pickup location. The input interface is further to receive a first pickup arrival indication indicating the driver arrived at the first pickup location. The output interface is further to provide a first destination indication indicating to the driver to go to the first destination. The input interface is further to receive a request for a second pickup including a second pickup location and a second destination.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for acquiring image data, determining that the user's vehicle is traveling in a left lane of a roadway having at least two lanes for travel in a first direction, detecting that a second vehicle is traveling within a predetermined distance in front of the user's vehicle and in the left lane of the roadway, obtaining speed information of the user's vehicle and the second vehicle at a first time and at a first location, determining, based on the obtained speed information, that a speed of the second vehicle at the first time is below a defined speed limit of the roadway at the first location, and in response triggering a potential violation procedure.
One or more techniques and/or systems are provided for slowdown detection. Location data received from vehicles traveling a road is evaluated to identify a road segment associated with vehicle speeds below a threshold. A space-time diagram is generated, and location data associated with vehicles traveling the road segment are plotted within the space-time diagram. The space-time diagram is processed using a convolutional neural network to determine a probability that the space-time diagram illustrates a slowdown. If the probability that the space-time diagram illustrates the slowdown is greater than a threshold, then a notification of the slowdown is transmitted to one or more computing devices associated with vehicles that may encounter the slowdown.
A hand-held electronic device having a remote control application user interface that functions to displays operational mode information to a user. The graphical user interface may be used, for example, to setup the remote control application to control appliances for one or more users in one or more rooms, to perform activities, and to access favorites. The remote control application is also adapted to be upgradeable. Furthermore, the remote control application provides for the sharing of operational mode information.
Alarm system technology, in which an alarm event is detected at a property monitored by an alarm system when the alarm system was set in an armed state. Based on detection of the alarm event, an alarm probability score that indicates a likelihood of the alarm event being an emergency situation is determined and the alarm event is handled based on the determined alarm probability score.
Systems, methods, and apparatuses are provided for creating and providing reminders that involve an activity states of an application on a device. An activity state can correspond to a particular view within an application, e.g., a view that was reached after several inputs from a user. A user can provide a specification of an activity state in a variety of ways, e.g., providing a reminder command while the application is executing in the foreground with the desired activity state or by voice commands that specify the activity state. A user can provide one or more trigger criteria. Once the reminder is triggered, the specified activity state can be provided to the user.
Embodiments of the disclosure provide for a system and method for determining a circuit breaker position in a power distribution/load center. In one embodiment, the load center includes a plurality of circuit breakers. Each circuit breaker includes a base and a plurality of contact components coupled to the base. In that regard, an activation of a combination of the contact components indicates a position of the circuit breaker within the load center. The activation of the combination indicates that one or more of the contact components is in contact with one or more pegs coupled to the load center. When this occurs, a data transceiver coupled to each of the contact components transmits a data signal. The data signal includes a plurality of data bits, where each data bit indicates whether a corresponding contact component of the combination is activated or not activated.
Cloud-based methods and systems are presented for aggregating custom groupings of Self-Service Terminals (SSTs) and managing the SSTs through a network. Real-time information for the SSTs are gathered and interfaces are used to direct selective usage of particular SSTs within a grouping. The groupings optimized for reducing media replenishment and service of any particular SST within the grouping.
The present invention appropriately gives game media to a player without lowering a game playability. An information processing program according to the present invention realizes with a computer: a first draw function that determines first game media by performing a draw based on a first draw table on the basis of a predetermined game selection operation by a player; a second draw function that determines second game media by performing a draw based on a second draw table on the basis of the predetermined game selection operation by the player; a medium group creation function that creates a medium group including the first game media determined by the first draw function and the second game media determined by the second draw function; a game control function that runs, by using the medium group, the predetermined game on the basis of an operation by the player; and a management control function that determines that at least one of the first game media determined by the first draw function is managed in association with identification information of the player, and determines whether or not to manage at least one of the second game media determined by the second draw function in association with the identification information of the player on the basis of a game result of the predetermined game.
A system for converting a redeemable winnings voucher into customer-useable value comprising: a processor comprising a computer-readable medium storing mobile point of sale application instructions configured to cause the processor, upon execution of the instructions to: receive a request, wherein the request comprises the redeemable winnings voucher; validate the redeemable winnings voucher; receive a confirmation of an amount of customer-useable value associated with the redeemable winnings voucher; facilitate the conversion of information comprising the redeemable winnings voucher into customer-useable value; and provide the customer-useable value to a customer.
Secondary gaming functionality is implemented relative to a casino gaming machine by a secondary controller which is associated with the gaming machine. In this manner, primary gaming functionality, such as primary wagering games and the award of primary awards and/or player reward points, may be implemented by the main game controller of the gaming machine. In addition, however, secondary gaming functionality may also be implemented at the gaming machine, such as secondary wagering games, secondary awards such as bonus and progressive awards and/or player reward points, via the secondary controller. The secondary controller may only implement secondary gaming functionality in response to a secondary wager placed by a player beyond a primary wager which enables the primary gaming functionality.
Systems, methods, and articles of manufacture for electronic gaming are disclosed. The method includes generating a plurality of reel strips that each include a column of symbol display positions, where each symbol display position includes a symbol, and evaluating each of the symbols in the symbol display positions. The method also includes determining that at least one of the symbols corresponds to a first in-game event, where the first in-game event is associated with a first value, and adding the first value associated with the first in-game event to a first progressive jackpot.
Systems, devices, and methods for artificial intelligence implementation for modifying user interface elements may include receiving gaming device data associated with a gaming device, the gaming device data including a plurality of gaming device parameter values for a plurality of gaming parameters associated with the gaming device. The gaming device data is analyzed to determine a first gaming device parameter value of the plurality of gaming device parameter values. Using a predictive model including a plurality of data clusters, the first gaming device parameter value is correlated with a first data cluster of the plurality of data clusters, where each data cluster is associated with a user interface parameter value of the gaming device. A user interface element of the gaming device is then modified based on the user interface parameter value associated with the first data cluster.
A method for controlling a generation of at least one access code includes receiving, in an access control device, data representing an access code; verifying the data representing the access code; in response to a detection in a verification that the access code is valid generating a signal causing a generation of data representing a new access code; and generating a signal causing a transmit of the data representing the new access code to a party from whom the data representing the access code is received. An access control device, a computer program product and a system are also disclosed.
A vehicle key programming system and method for chip reading and writing, key and remote programming and remote frequency testing. The system tracks programming usage when not connected to system servers and reports such usage upon connection. Immobilizer algorithms are chosen to program and such algorithms are optimized with each attempted use.
A system and method for vehicle technician communication utilizing a local vehicle service system operatively coupled to a remote vehicle service system via a network connection. The system enables bi-directional communication between the local service technician and a service specialist associated with the remote vehicle service system by configuring the local vehicle service system with software instructions and hardware to provide a communication interface, such as a software app, graphical user interface, or teleconference functionality. Using the communication interface, the service specialist can: (1) guide the local technician through the initial process of establishing a connection between the vehicle undergoing service or inspection and the remote vehicle service system; (2) direct necessary actions during a diagnostic analysis of the vehicle, such as turning on the vehicle's engine, turning a steering wheel, etc.; and (3) convey results of the vehicle diagnostic analysis in verbal, written, or visual form.
A method for trigger action management in a telematics device, and a telematics device employing the method are provided. The method includes receiving a log and trigger configuration, and in response to detecting a trigger condition, performing an associated action.
Implementations relate to interactions, over a wireless communication modality, between an automated assistant of an automobile computer system, and separate client device(s). In some of those implementations, the client device(s) can be paired with the automobile computer system, and the client device(s) and the automobile computer system can include separate instances of an automated assistant, which can be associated with different user accounts. In some additional or alternative implementations, particular actions to be performed by a local application of a client device can be advanced via user interaction with the automobile automated assistant, despite a counterpart to the local application not being installed directly on automobile computer system. For example, despite an automobile computer system not having a third-party messaging application installed, the automobile automated assistant can access requested actions to be performed by the third-party messaging application in order to further a requested action. The automobile computer system can transmit, via the wireless communication modality, content to cause the third-party application to further the requested action.
Provided are an electronic device and operation method thereof. The electronic device may include: a display having a biometric sensing region; a biometric sensor disposed in the biometric sensing region; and a processor. The processor may be configured to: operate a first sub-region of the biometric sensing region according to a first display attribute and operate a second sub-region of the biometric sensing region according to a second display attribute; while the first sub-region is operated according to the first display attribute and the second sub-region is operated according to the second display attribute, obtain, through the biometric sensor, a signal corresponding to an external object, wherein the signal is generated at least partially based on light that is emitted from the first sub-region or the second sub-region and reflected by the external object; perform authentication on the external object if the signal satisfies a specified condition; and prevent authentication on the external object if the signal does not satisfy the specified condition.
Provided are a display panel, a manufacturing method thereof and a display apparatus. The display panel includes a fingerprint identification sensor, a first light shield layer disposed on the fingerprint identification sensor and a color film layer disposed on the first light shield layer, wherein the color film layer includes color filters with different colors and light transmission parts disposed between the color filters with different colors; the first light shield layer includes first openings and light shield parts, the light transmission parts and the first openings are used for allowing fingerprint reflected light to transmit and reach the fingerprint identification sensor, and the light shield parts are used for blocking out stray light.
In some implementations, a device may receive an image that depicts an environment associated with a vehicle. The device may partition the image into a plurality of subsections. The device may analyze the plurality of subsections to determine respective subsection information, wherein subsection information, for an individual subsection, indicates: a probability score that the subsection includes a line segment associated with an object class, a position of a representative point of the line segment, and a direction of the line segment. The device may identify, based on the respective subsection information of the plurality of subsections, a line associated with the object class that is associated with a set of subsections of the plurality of subsections. The device may perform one or more actions based on identifying the line associated with the object class.
Disclosed herein are an apparatus and method for compensating for a heading angle. The apparatus for compensating for a heading angle includes a compensation condition determination unit configured to determine whether a predetermined compensation condition is satisfied, to compensate for a heading angle of a camera, and a heading angle processing unit configured to compensate for the heading angle of the camera using a lane distance input from the camera, when it is determined by the compensation condition determination unit that the compensation condition is satisfied.
A method for modifying a trailer detection routine for a vehicle trailer detection system includes identifying a trailer in image data via a trailer detection model and activating a detection training routine for the trailer. The method further includes capturing the image data of the trailer from a plurality of perspectives relative to a trailer heading of the trailer and controlling an update procedure configured to generate a modified trailer detection model operable to detect the trailer.
Various embodiments of the invention pertain to an augmented reality interface for facilitating identification of an arriving vehicle and/or a passenger that improve upon some or all of the above-described deficiencies. According to some embodiments of the invention, a mobile device may be used by a passenger to scan scenery. The mobile device may determine whether and where a requested vehicle is located and display an indicator of the requested vehicle on the mobile device. Similarly, a mobile device may be used by a driver to scan scenery. The mobile device may determine whether and where a passenger is located and display an indicator of the requesting passenger on the mobile device.
An approach is provided for confirming road vector geometry based on aerial image(s). For example, the approach involves retrieving a feature and a vector representation of a road link. The approach also involves processing one or more aerial images depicting the road link to extract a list of spectral pixel values corresponding to the vector representation. The approach further involves determining a degree of misalignment between the spectral pixel values and a spectral signature of the feature of the road link. The approach further involves initiating a confirmation of a geometry of the vector representation based on the degree of misalignment. The approach further involves providing the confirmation as an output.
A recommendation method includes retrieving content consumption data including content consumed and content not consumed. Based on the content consumption data, identifying a first piece of content not consumed. A first feature of the first piece of content related to negative consumption of the first piece of content is determined. A first system is used to revise the first feature to a second feature. A second piece of content including the second feature is provided to an electronic device. The second piece of content is a revised instance of the first piece of content.
Systems and methods are provided for a workflow framework that scriptwriters can utilize when developing (live-action/animation/cinematic) virtual reality (VR) experiences or content. A script can be parsed to identify one or more elements in a script, and a VR representation of the one or more elements can be automatically generated. A user may develop or edit the script which can be presented in a visual and temporal manner along with the VR representation. The user may edit the VR representation, and the visual and temporal presentation of the script can be commensurately represented. The script may be analyzed for consistency and/or cohesiveness in the context of the VR representation or experience. A preview of the VR experience or content can be generated from the script and/or the VR representation.
A technology for reducing a processing delay when a plurality of mixed reality spaces are shared between terminals is provided.
An information processing system includes a terminal configured to display an image representing a mixed reality space obtained by superimposing a virtual space in a real space, and a server apparatus configured to communicate with the terminal. The server apparatus manages, for each of a plurality of real spaces, information for identifying the real space and anchor information for defining a superimposition position of the virtual space in the real space and, in a case where an acquisition request for anchor information corresponding to a first real space is received from the terminal, transmits response information including anchor information corresponding to the first real space and anchor information corresponding to a second real space adjacent to the first real space to the terminal. The terminal stores the response information received from the server apparatus and, in a case where the terminal is placed into the second real space, displays an image representing a mixed reality space based on anchor information corresponding to the second real space.
Viewport transformation modules for use in a three-dimensional rendering system wherein vertices are received from an application in a strip. The viewport transformation modules include a fetch module configured to read from a vertex buffer: untransformed coordinate data for a vertex in a strip; information identifying a viewport associated with the vertex; and information identifying a viewport associated with one or more other vertices in the strip. The one or more other vertices in the strip are selected based on a provoking vertex of a primitive to be formed by the vertices in the strip and a number of vertices in the primitive. The viewport transformation modules also include a processing module that performs a viewport transformation on the untransformed coordinate data based on each of the identified viewports to generate transformed coordinate data for each identified viewport; and a write module that writes the transformed coordinate data for each identified viewport to the vertex buffer.
In one embodiment, a method includes a server generating first shading information for visible portions of objects relative to a first viewpoint, storing the first shading information in a texture atlas, and sending the texture atlas to a client device. The method also includes determining a first subset of the visible portions of the objects for which shading information is to be re-generated and a second subset for which elements of the first shading information are to be reused, generating second shading information for the first subset relative to a second viewpoint, updating the texture atlas to include the second shading information for the first subset and the elements of the first shading information for the second subset, and sending the updated texture atlas to the client device. The updated texture atlas is configured for rendering images of the visible portions of the objects from multiple viewpoints.
Disclosed is a rendering system that dynamically changes the resolution at which image data in a field-of-view (“FOV”) is rendered based on the proximity or depth of the image data relative to the render position or camera position. The rendering system selects the image data that is within the FOV, and generates a depth map with a set of distance measures for different distances or depths of the image data in the FOV. The rendering system selects a dynamic resolution at which to render the FOV based on the set of distance measures from the depth map, and renders the image data and/or FOV at the dynamic resolution.
A method and apparatus are provided to allow the viewing of an item from several virtual positions for evaluation and potential purchase. The information, including photographs, about the item is made available using the Internet.
A system and method for performing intersection testing of rays in a ray tracing system. The ray tracing system uses a hierarchical acceleration structure comprising a plurality of nodes, each identifying one or more elements able to be intersected by a ray. The system iteratively obtains ray requests, each of which identifies a ray and a node against which the ray is to be tested, and performs intersection testing based on the ray requests. The number of ray requests obtained in each iteration reduces responsive to an amount of memory occupied by information relating to the rays (undergoing intersection testing) increasing.
A character animation motion control method and device are disclosed. A character animation playing method, including extracting first actions based on a state of a character, extracting second actions based on the state, selecting an action included in the first actions and the second actions, and updating the state based on the action.
A computer system for selecting image products includes a display for displaying digital images, and for displaying representations of image products. Digital images are composited into the displayed representations to form digitally composited image product views. Programming controls displaying the composited image product views separately from the unselected representations. One or more of the displayed composited image product views are selected and assembled or fabricated.
Systems, methods, and non-transitory computer readable media for augmenting scenes viewed thorough displays of an eyewear devices with audio-related image information. Scenes may be augmented by capturing, via a camera of the eyewear device, initial images of a scene, identifying features within the initial images; receiving audio-related image information (e.g., lyrics and/or images), registering the audio-related image information to the identified features, creating audio-based visual overlays including the audio-related image information registered to the identified features, and displaying the audio-based visual overlays over the scene.
The present application relates to a method for indoor positioning, and an apparatus, an electronic device and a storage medium, which relates to the fields of positioning technologies and deep learning technologies. A specific implementation solution is: extracting descriptors of structure lines in a specified image collected by a terminal indoors; based on the descriptors of the structure lines in the specified image and descriptors of structure lines of images included in a pre-established indoor image database, acquiring, from the indoor image database, target structure line descriptors closest to the descriptors of the structure lines in the specified image; and acquiring pose information of the terminal based on a pre-established indoor 3D structure line map and the target structure line descriptors corresponding to the descriptors of the structure lines in the specified image. The present application can position a terminal based on structure lines in a specified image collected by the terminal indoors, without being affected by texture information such as a billboard in the image, as well as illumination and appearance changes, which has higher robustness and can effectively improve the stability and accuracy of indoor positioning.
The present invention discloses a system and method for improvement in process of measurement of body circumference using Augmented Reality (AR) and 4-point mathematical calculations approach and mobile device camera. The method includes the steps of receiving two or more individual parameters from an individual device; receiving at least one set of 4 points capture through AR technology; measurement through AR technology from the individual device, at least one dimension including user's inputs on height, weight, age, and size range; performing body segmentation on at least one dimensions to identify one or more body features associated with the human from the background; performing the distance calculation between four points; compare the calculation results with standard sizing database and displaying the final output to the individual. The application utilizes Augmented Reality for estimating the circumference body measurements of an individual from specific point to point capture in the individual's environment using the individual's device.
A system and method for a scalable depth sensor. The scalable depth sensor having an emitter, a receiver, and a processor. The emitter is configured to uniformly illuminate a scene within a field-of-view of the emitter. The receiver including a plurality of detectors, each detector configured to capture depth and intensity information corresponding to a subset of the field-of-view. The a processor connected to the detector and configured to selectively sample a subset of the plurality of the detectors in accordance with compressive sensing techniques, and provide an image in accordance with an output from the subset of the plurality of the detectors, the image providing a depth and intensity image corresponding to the field-of-view of the emitter.
A data processing device for motion segmentation in images obtained by cameras that move in a background environment includes an input for receiving a temporal sequence of images from the cameras and a processor. The processor is adapted for, for at least two images, of the temporal sequence of images, that are obtained by at least two cameras at different points in time, determining epipoles, defining corresponding image regions of limited image disparity due to parallax around the epipoles in the at least two images, and applying a motion segmentation algorithm to the corresponding image regions. Warping is applied to the corresponding image regions to compensate for camera rotation and misalignment beyond a threshold value.
Methods, systems, and devices for generating a persistent world-space ground (or floor) segmentation map (or “texture”) for use in augmented or virtual reality 3D experiences.
Various methods and systems are provided for a set of devices for an imaging system. In one example, the set of devices includes a first device configured to obtain a first set of image data and a second device configured to obtain a second set of image data along at least one dimension. The first and second sets of data may be compiled to generate a field-of-view (FOV) preview.
Systems and methods for identifying a personalized prior within a generative model's latent vector space based on a set of images of a given subject. In some examples, the present technology may further include using the personalized prior to confine the inputs of a generative model to a latent vector space associated with the given subject, such that when the model is tasked with editing an image of the subject (e.g., to perform inpainting to fill in masked areas, improve resolution, or deblur the image), the subject's identifying features will be reflected in the images the model produces.
A thermal image processing method includes determining a blending ratio of a first equalization algorithm to a second equalization algorithm that are different from each other, based on a result of analyzing an original histogram of an original thermal image; generating a first corrected thermal image obtained by applying the first equalization algorithm and the second equalization algorithm to the original thermal image according to the blending ratio; adjusting the blending ratio by comparing a corrected histogram of the first corrected thermal image with the original histogram; and generating a second corrected thermal image obtained by applying the first equalization algorithm and the second equalization algorithm to the original thermal image according to the adjusted blending ratio.
An image denoising method includes: acquiring a first data set and a second data set, where the first data set includes a plurality of first images without noise, the second data set includes a plurality of second images with real noise, contents of each first image and each second image are different; training, by using the first data set and the second data set, a first network to obtain a noise generation model; inputting the first image into the noise generation model, and outputting a third image with simulated noise; where a plurality of third images forms a third data set; training, by using the first data set and the third data set, an image denoising network to obtain an image denoising model. The image denoising model is configured to convert an original image with noise into an output image without noise.
A computer-implemented method for generating device-identifying digital content on social media platforms may include (i) identifying digital content created by a content-creation device for display on a social media platform, (ii) modifying the digital content to indicate that the digital content was created by the content-creation device such that, when the modified digital content is displayed on the social media platform, the modified digital content identifies the content-creation device as the source of the digital content, and (iii) displaying, on the social media platform, the modified digital content to enable users of the social media platform to identify the content-creation device as the source of the digital content. Various other methods, systems, and computer-readable media are also disclosed.
Apparatuses, systems, and methods for collecting utility meter data are described. An example system may include a flow controller and a server. The flow controller is configured to communicate with a water meter for a property and connected to at least one water outlet of a plurality of water outlets. The server is coupled to one or more infrastructure databases and the flow controller. The server includes a non-transitory computer readable media and is configured to execute instructions stored on the non-transitory computer readable media. The instructions include receiving water usage data from the flow controller and transmitting the water usage data from the water meter for the property to a water utility company.
Systems and methods for crowdsourcing a condition of collateral are disclosed herein. An example system may include a set of crowdsourcing services by which a crowdsourcing request is communicated to a group of information suppliers and by which responses to the crowdsourcing request are collected and processed to provide a reward to at least one successful information supplier. The example system may further include an interface to the set of crowdsourcing services that enables configuration of parameters of the crowdsourcing request, wherein the crowdsourcing request and the parameters are configured to obtain information related to a condition of a set of collateral for the loan. The example system may further include a set of publishing services that publish the crowdsourcing request.
Aspects of the disclosure relate to using machine learning algorithms to analyze vehicle operational data associated with a vehicle accident. In some instances, an accident assessment server may receive data indicating that a vehicle was involved in an accident. The accident assessment server may compare the data with other known data, based on machine learning algorithms, to identify whether the accident resulted in a total loss. Responsive to determining that the accident resulted in the total loss, the accident assessment server may request further information regarding the vehicle and may identify a baseline value range for the vehicle. The accident assessment server may request updated information from the owner of the vehicle, identify, based on the updated information, a final value of the vehicle, and may pay the owner of the vehicle an amount corresponding to the final value if the final value is within the baseline value range.
In an approach for detecting vehicle identity and analyzing damage status using a single video, a processor provides an instruction for taking a video of a vehicle for a damage evaluation. A processor receives the video of the vehicle for the damage evaluation. A processor verifies the vehicle in the video being the same vehicle for the damage evaluation. A processor evaluates a damage status of the vehicle. A processor outputs a damage report based on the damage status of the vehicle.
Methods and systems for monitoring use, determining risk, and pricing insurance policies for a vehicle having autonomous or semi-autonomous operation features are provided. According to certain aspects, a computer-implemented method for generating or updating usage-based insurance policies for autonomous or semi-autonomous vehicles may be provided. A request to generate an insurance quote may be received via wireless communication, and with the customer's permission, risk levels associated with intended usage by the customer of an autonomous or semi-autonomous vehicle may be determined. An insurance policy may be adjusted based upon the risk levels and the intended vehicle usage. The insurance policy may then be presented on the customer's mobile device for review and approval. In some aspects, the vehicle may be rented, and the intended vehicle usage is measured in distance or duration of vehicle operation. Insurance discounts may be provided to risk averse vehicle owners based upon low risk levels.
Systems and methods are provided for linking a customer's preexisting financial account to a merchant issued payment vehicle. If an account number associated with the preexisting financial account changes, the linking of the merchant issued payment vehicle is updated with an updated account number.
A graphical user interface for a financial planning system includes at least one planning engine in communication with a database storing user profiles for a first and second plurality of users registered respectively for a first and second service level. An introductory page displays, to the first and second users, a top level menu and a comparison of an estimated retirement income amount to a user goal. The top level menu appears in a substantially identical format and location, and the first comparison appears in a substantially identical format and location, to the first and second users. The introductory page also displays, to the first and not the second users, an enrollment link operable to enable registration for the second service level. The introductory page further displays, to the second and not the first users, a dashboard link operable to open a dashboard page for the second level of services.
A product or article of manufacture using a method of attaching a digitally printed attaching member to a material so that it can be customized with at least one add-on feature. The method uses 3D printing to produce attaching members with advanced features, providing unique customization capabilities. The method allows products to change their appearance or functionality and offers a new business model that uses the advantages of digital printing technology to enable advanced do it yourself customization of products. The method discloses how to integrate digital images with physical products.
A method of operating a price estimation system includes obtaining service requests from consumers, and obtaining bids from service professionals based on the service requests obtained from the consumers. The method additionally includes generating a training set based on the bids and the service requests, and generating a model for generating price estimates based on the training set. The method also includes employing the model to generate the price estimates based on additional service requests provided by additional consumers. In some aspects, the method further includes communicating the price estimates to the additional consumers during performance of a process for obtaining the additional service requests from the additional consumers. In other aspects, the method further includes communicating the price estimates to additional service professionals during performance of a process for obtaining additional bids from the additional service professionals based on the additional service requests.
A hybrid, optimized exchange is provided, the hybrid, optimized exchange operably connected to a demand-side platform (DSP), the hybrid, optimized exchange further operably connected to a supply-side platform (SSP), the hybrid, optimized exchange configured to receive an advertising request, the hybrid, optimized exchange further configured to conduct, using a bid floor, a hybrid, optimized DSP auction of the advertising request among a plurality of DSPs, thereby generating a winning DSP that makes a winning DSP bid in an automated advertising auction system after the SSP initiates an SSP auction of the advertising request, the hybrid, optimized exchange optimizing the bid floor provided to the plurality of DSPs in the hybrid, optimized DSP auction and simultaneously optimizing a shading factor used by the hybrid, optimized exchange to place a hybrid, optimized bid on behalf of the winning DSP in the SSP auction.
Systems and methods for tracking the sales of products and presence of advertising materials within a physical store are provided. According to certain aspects, a sensor component disposed within the physical store may detect light emitted by a unique product identifier (UPI) affixed to a product. A processor of the sensor component may analyze the detected light to determine the UPIs, generate a digital representation of the UPIs within a field of view, and transmit at least a portion of the digital representation to a server computer. A plurality of sensor components may track the movement and sales of various products and presence of advertising materials in the physical store, and the server computer may analyze the resulting data to improve merchandising and the sales experience for customers, among other benefits.
Merchants create ecommerce-enabled ad units advertising items offered by the merchants. The ad units contain functionality enabling customers to purchase the items by interacting with the ad units. The ad units have associated bid prices that the merchants agree to pay for sales through the ad units. The merchants provide the ad units to a broker. The broker publishes the ad units on web pages provided by publishers as comparison shop ad units that contain multiple ad units and functionality for navigating among them. A customer receiving a web page interacts with an ad unit to purchase the item. During the interactions, the broker dynamically updates the ad unit to conduct the transaction.
Methods, systems, and media for managing online advertising campaigns based on causal conversion metrics are provided. In some embodiments, the method comprises: receiving conversion information corresponding to test group including consumers that were presented with an advertisement using an advertising channel; receiving advertisement viewability information indicative of a probability that each of the consumers viewed the advertisement; determining that a subset of the consumers did not view the advertisement based on the probability; placing the consumers into a control group and a test group based on the probability corresponding to each of the consumers; calculating a causal conversion metric based on a comparison of the conversion information corresponding to consumers of the control group and conversion information corresponding to consumers of the test group; and determining whether to place an advertisement using the advertising channel based on the causal conversion metric.
Methods and systems are presented for providing instant authentication of a product and enhanced user experience with the product via blockchain technologies. A product verification system uses blockchain technologies to track the supply chain process of each instance (e.g., each copy) of a product. Upon receiving a request for authenticating an item, a code provided with the item is scanned. A token corresponding to an instance of a product is determined based on the code. The product verification system traverses a blockchain to access data associated with the token. The item is authenticated based on the data. Additional content provided by the supply chain and/or the manufacturer of the instance of the product may be presented on a user device in response to authenticating the item.
Intelligent merchant onboarding is described. A service provider can determine first directive(s) that were presented to one or more first potential merchants that completed an onboarding process with the service provider and second directive(s) that were presented to one or more second potential merchants that did not complete the onboarding process. The service provider can train a data model based at least partly on the first directive(s) or the second directive(s), Based at least partly on receiving an indication that a potential merchant initiates the onboarding process, the service provider can determine information associated with the potential merchant. Based at least partly on the data model and the information, the service provider can intelligently determine an order that one or more directives are to be presented to the potential merchant such that a first directive of the first directive(s) is presented prior to a second directive of the second directive(s).
A method is provided for displaying an augmented reality image of account information associated with an indicialess transaction card having a card surface with a background pattern applied thereto. A real-time image of the card surface is captured and processed to determine if the background pattern matches a card background pattern associated with a cardholder account. Responsive to a positive determination, communication is established between the user device processor and a card processor carried by the indicialess transaction card. The user device processor receives from the card processor an encrypted verification block and transmits, to an authentication server, an authentication request including the verification block. Responsive to receiving a positive authentication response, the user device constructs an augmented reality image comprising account indicia and displays the augmented reality image superimposed over the real-time image of the background pattern on the card surface of the indicialess transaction card.
Computer-implemented methods, apparatuses, and computer program products are disclosed for proximate financial transactions. An example method includes receiving a request for participation in a proximate financial transaction by a first user device associated with a first user and a first user profile where the proximate financial transaction is associated with a transfer of physical currency notes. The method further includes determining at least a second user device associated with a second user and second user profile proximate the first user for participation in the proximate financial transaction. The method also includes causing presentation of identification data of the second user via the first user device and detecting the transfer of physical currency notes between the first user and the second user. The method further includes effectuating an electronic financial transaction between a first user account of the first user and a second user account of the second user.
Systems and methods of executing a real-time electronic transaction by a real-time transaction system are disclosed. One the method includes receiving, by a reconciliation system, a transaction update associated with a transaction request from a transaction network. The reconciliation system may authenticate the transaction update by communicating with an authentication system. The reconciliation system may translate the transaction update into at least another format. The reconciliation system may transmit the transaction update to a notification handler. The reconciliation system may receive transaction data associated with the transaction update from a transaction query system. The reconciliation system may transmit the transaction update to a transaction requestor associated with the transaction data.
A method for implementing zero-knowledge private key management for decentralized applications on a client device including registering an account with a verifier server, initializing a wallet, generating a public key and a private key, encrypting the private key with a zero-knowledge encryption function, producing an encrypted private key, transmitting the encrypted private key to the verifier server, removing the private key from the decentralized client application, sending a transaction request to a decentralized application, receiving a raw transaction, requesting and receiving the encrypted private key from the verifier server, decrypting the encrypted private key with a zero-knowledge decryption function, signing the raw transaction with the decrypted private key, transmitting the signed transaction to the decentralized application, and removing each of the encrypted private key and the decrypted private key from the client application.
Medium, method and system for a distributed ledger system for recording asset provenance and titling information. The distributed ledger may store information that can be used to tie a particular digital asset provenance tag to an associated asset such as a serial number or other identifying indicia. The digital asset provenance tag may further store information regarding the provenance of the asset in question, including the history of the production and previous ownership of the asset. Thus, a prospective purchaser of the asset can confirm that the asset is what it is purported to be and that the seller is actually the owner of the asset prior to purchase.
A system for identifying a consumer at a retailer point of sale (POS) incorporates a virtual wallet database that contains consumer records. A consortium processor utilizes a database or databases with information known to the electronic tender provider but not available to the virtual wallet database. If the identifying data from the retailer POS hardware does not match any data from the virtual wallet database, an enhanced trade area append processor is employed to find a matching consumer within the retailer POS trade area. If a match is found, the applicable address is attached to the consumer data captured at the POS. A record is then sent to the consortium processor, which compares this data to its own records and returns a match or no-match result. The virtual wallet database is updated based on the match results.
Provided is a method for distributed payment processing using a centralized payment processing platform. The method includes creating, using an application, an account associated with the centralized payment processing platform; creating, using the application, a virtual payment card associated with the account; receiving a selection of a balance for the virtual payment card within a limit of the account; receiving a selection of a recipient for the virtual payment card; generating a token associated with the virtual payment card; and transferring the token to the recipient. The payments made with the virtual payment card are processed by the centralized payment processing platform.
A method of adding a computerized agent to an instant messaging (IM) session managed by an IM service for identifying automatically textual instructions to perform a transaction related to participant(s) of the IM session, comprising: using a computerized agent subscribed to an IM service by a telephone number and participates in an IM session managed by an IM service to acquire text content in an IM session and analyzing at least the text content of the IM session to identify automatically textual instructions to perform a transaction from the user which uses the IM client module, automatically instructing an operation of the transaction and submitting by the computerized agent at least one IM message in the IM session.
Systems and methods for providing a disposal recommendation for a vehicle are provided. The method includes generating a profile for a first vehicle, the first vehicle being an income generating vehicle and the first vehicle profile including at least age, mileage, and location of the first vehicle, receiving monitoring data of the first vehicle, and receiving sales data for second vehicles, the second vehicles corresponding to the profile. The method may further include generating predicted depreciation data of the first vehicle, based on the sales data and the monitoring data, generating a predicted profit data from the first vehicle, and providing a recommended disposal time for the first vehicle, based on the predicted depreciation data and the predicted profit data.
Described herein is a system for providing version control across APIs. In an embodiment, an application of a client device may transmit communications to a service application API that are in a format not accepted by the service application API, using the application API. A central (or public) API may receive the communication transmitted by the application's API. The central API may identify the versions of the application's API and the service application API. The central API may format the communication based on the mapped fields, to a format accepted by the service application API. The central API 106 may forward the formatted communication to the service application.
A system and method for automated order preparation and fulfillment timing. The system is a cloud-based network containing an optimization server, portals for restaurants, customers, and drivers to enter their information, and an optimization engine which determines an optimal state for consumption of, and timing for fulfillment of, an order based on a multitude of variables associated with the business enterprises and delivery driver availability. The system may be accessed through web browsers or purpose-built computer and mobile phone applications.
Techniques for a package selection feature for selecting subsets of packages and generating instructions to deliver selected packages are described herein. A model may be generated for recursively determining future forecast for potential deliveries associated with a geographic location based at least in part on capacity constraints, delivery vehicle capacity, and historical delivery data for the geographic location. Information that identifies a set of packages for delivery to the geographic location during a first duration may be received. A value for each subset of a plurality of subsets for the set of packages may be determined based on an algorithm that uses the future forecasts and the information. A particular subset may be selected for delivery to the geographic location for a given carrier during a duration based on an algorithm that uses various parametric values for the particular subset, the future forecasts, and the information.
Methods and systems of prescribing navigational instructions to autonomous vehicle, aerial as well as terrestrial, are discussed. In one embodiment, mission relevant data is collected and passed to an assessment unit. The assessment unit assess data relevant to the mission, rules and authorizations. The assessment unit either approves the mission by sending mission instructions or denies the mission by sending a rejection response. A mission is an assembly of one or more navigational containers, a navigational container being a repository for navigational guidance and rule-based authorization assessment.
Computer program products, methods, systems, apparatus, and computing entities are provided. In one embodiment, a method is provided. The method comprises receiving location information for an item. The location information indicates the current physical location of the item. The method further comprises determining whether the item is located within a first configurable distance of an establishment and responsive to determining that the item is located within the first configurable distance of the establishment, requesting first location information for the consignee of the item and second location information for the consignee of the item. The method further comprises determining whether the consignee is within a second configurable distance of the establishment based at least in part on the first location information for the consignee and the second location information for the consignee and providing a notification for display via a user interface of an application executing on a customer computing entity.
Cognitive and heuristics-based emergent financial management is provided. A method includes obtaining data related to an individual, an organization, a process, or combinations thereof. The data is obtained from internal sources, external sources, or combinations thereof. The method also includes creating data sets from the data based on determined classifications of the data. Further, the method includes establishing relationships between the data sets and determining a conclusion based on the relationships. The conclusion is based on a hypothesis that has undergone a test process.
A method includes receiving a plurality of user use cases; analyzing the use cases using an AI engine to order the use cases; generating an optimized machine learning model; and causing an optimized deployment option to be displayed. A computing system includes a processor; and a memory comprising instructions, that when executed, cause the computing system to: receive a plurality of user use cases; analyze the use cases using an AI engine to order the use cases; generate an optimized machine learning model; and cause an optimized deployment option to be displayed. A non-transitory computer-readable storage medium stores executable instructions that, when executed by a processor, cause a computer to: receive a plurality of user use cases; analyze the use cases using an AI engine to order the use cases; generate an optimized machine learning model; and cause an optimized deployment option to be displayed.
The current invention is a tasking system that operates to allow businesses to define a task and to assign the task to one or more registered individuals, wherein the system includes one or more portable communication apparatus that permits registered individuals to receive and accept tasks and to monitor tasks in real-time.
Systems and methods for recommending merchant actions include a physical merchant location having a plurality of beacon devices. A system provider device receives a plurality of first location information from the plurality of beacon devices that is collected from a customer beacon communication device that is associated with a customer. The system provider device also receives a plurality of second location information over the network from the plurality of beacon devices that is collected from a merchant beacon communication device that is associated with an asset of the merchant. The system provider device analyzes the plurality of first location information and the plurality of second location information to determine at least one merchant action recommendation related to the customer and the asset of the merchant and provides the at least one merchant action recommendation over the network for display on a display device.
The present disclosure provides, among other things, methods and systems of managing a first channel, including: receiving a request for a communication session on the first channel; determining that a monitored attribute of the communication session has met a first threshold; comparing, by a channel change analysis, a first performance measure of the first channel with a second performance measure of a second channel; and managing a channel change based on the determining and the channel change analysis.
A method for managing authorization to access a shared vehicle, the vehicle having a memory dimensioned to simultaneously store a maximum number of reservations. The method includes obtaining a first reservation of a vehicle, searching, in a local representation of the memory of the vehicle, for an available location for storing the first reservation, and when there is no available location for storing the first reservation, selecting, from the reservations stored in the local representation of the vehicle's memory, a second reservation such that the start date of the second reservation is after the start date of the first reservation, storing the characteristics of the second reservation in a waiting list, replacing, in the local representation of the memory of the vehicle, the selected reservation with the first reservation, and transmitting, to the vehicle, a command to delete the second reservation, and a command to add the first reservation.
A system performs operation monitoring in which a learning model in operation is monitored. In the operation monitoring, the system performs a first certainty factor comparison to determine, each time the learning model in operation to which input data is input outputs output data, whether or not a certainty factor of the learning model is below a first threshold. In a case where a result of the first certainty factor comparison is true, the system replaces the learning model in operation with any of candidate learning models having a certainty factor higher than the certainty factor of the learning model in operation in which the result of true is obtained among one or more candidate learning models (one or more learning models each having a version different from a version of the learning model in operation), as a learning model of an operation target.
A system includes a memory having instructions therein and at least one processor in communication with the memory. The at least one processor is configured to execute the instructions to determine a global-level importance magnitude value for a global-level importance of an explainable feature of a machine learning base model based on a first prediction of the machine learning base model. The at least one processor is also configured to execute the instructions to determine a global-level importance direction label for the global-level importance of the explainable feature based on the first prediction. The at least one processor is also configured to execute the instructions to generate a communication for presentation to a user based on a second prediction of the machine learning base model, based on the global-level importance magnitude value, and based on the global-level importance direction label.
A method for training a machine learning model includes: receiving, by a computer system including a processor and memory, a training data set including imbalanced data; computing, by the computer system, a label density fX(x) in the training data set, computing, by the computer system, a weight function w(x) including a term that is inversely proportional to the label density; weighting, by the computer system, a loss function (x, {circumflex over (x)}) in accordance with the weight function to generate a weighted loss function w(x, {circumflex over (x)}); training, by the computer system, a continuous machine learning model in accordance with the training data set and the weighted loss function w(x, {circumflex over (x)}); and outputting, by the computer system, the trained continuous machine learning model.
Embodiments may provide techniques that that may automatically generate a customized SOC rule set for an organization. For example, in an embodiment, a method may be implemented in a computer comprising a processor, memory accessible by the processor, and computer program instructions stored in the memory and executable by the processor, the method may comprise simulating operation of a security incident and event management system by running a plurality of rules of the system on labeled data, determining fitness metrics of the plurality of rules, selecting at least one rule of the plurality of rules based on the determined fitness metrics; modifying the selected rule to form an updated rule, and repeating running the updated rule on the labeled data, determining fitness metrics of the updated rule, and mutating the updated rule.
Disclosed herein is an image deep learning model training method. The method includes sampling a twin negative comprising a first negative sample and a second negative sample by selecting the first negative sample with a highest similarity out of an anchor sample and a positive sample constituting a matching pair in each class and by selecting the second negative sample with a highest similarity to the first negative sample, and training the samples to minimize a loss of a loss function in each class by utilizing the anchor sample, the positive sample, the first and second negative samples for each class. The first negative sample is selected in a different class from a class comprising the matching pair, and the second negative sample is selected in a different class from classes comprising the matching pair and the first negative sample.
In one embodiment, a method includes receiving an input vector corresponding to a query at a neural network model comprising a plurality of layers, wherein the plurality of layers comprise a last layer associated with a mapping matrix, generating a binary matrix based on the mapping matrix, an identity matrix, and one or more Gaussian vectors, generating an integer vector based on the binary matrix and a binary vector associated with the input vector, identifying a plurality of indices corresponding to a plurality of top values of the integer vector for the integer vector, generating an output vector based on the input vector and a plurality of rows of the mapping matrix, wherein the plurality of rows is associated with the plurality of identified indices, respectively, and determining the query is associated with one or more classes based on the output vector.
A system and method for enhancing inferential accuracy of an artificial neural network during training includes during a simulated training of an artificial neural network identifying channel feedback values of a plurality of distinct channels of a layer of the artificial neural network based on an input of a training batch; if the channel feedback values do not satisfy a channel signal range threshold, computing a channel equalization factor based on the channel feedback values; identifying a layer feedback value based on the input of the training batch; and if the layer feedback value does not satisfy a layer signal range threshold, identifying a composite scaling factor based on the layer feedback values; during a non-simulated training of the artificial neural network, providing training inputs of: the training batch; the composite scaling factor; the channel equalization factor; and training the artificial neural network based on the training inputs.
A dispenser with a replaceable cartridge containing a product to be dispensed, and a housing configured to removably receive the cartridge. The cartridge has a surface that is marked with a first marking, and the housing has a surface that is marked with a second marking. The housing is configured so that, when the cartridge is received by the housing, the first marking and the second marking together form a machine readable code that is detectable from outside of the housing.
A computer that generates a product tag for a product is described. During operation, the computer may obtain information specifying multiple document locations associated with the product based at least in part on different environmental conditions of the product. Then, the computer may generate the product tag (or additional information specifying the product tag), where the product tag includes location information specifying the document locations. Moreover, given location information is associated with a given functional ink or is associated with a given state of a circuit in the product tag that is responsive to a given environmental condition. Furthermore, the environmental conditions for different functional inks or different states of the circuit are different, such that, at a given time, the product tag presents location information for a given one of the document locations. Next, the computer may provide the additional information specifying the product tag to the electronic device.
An image forming system includes processing circuitry. The processing circuitry generates print image data to for printing a first image included in print job data, on a conveyance medium. The processing circuitry controls printing on the conveyance medium based on the print image data. The processing circuitry sets an area for printing a second image including identification information to identify each page of the conveyance medium, in a first area where the first image is not printed, to generate the print image data.
A method for automatically recognizing content of labels on objects includes: capturing visual information of an object using a scanning system including one or more cameras, the object having one or more labels on one or more exterior surfaces; detecting, by a computing system, one or more surfaces of the object having labels; rectifying, by the computing system, the visual information of the one or more surfaces of the object to compute one or more rectified images; and decoding, by the computing system, content of a label depicted in at least one of the one or more rectified images.
In some examples, QR code based test data embedding and transmission may include obtaining, by a test data analyzer that is executed by at least one hardware processor, test data based on operation of a test device to measure a parameter associated with an optical fiber. Based on an analysis of the test data, a report that includes the test data may be generated. A quick response (QR) code generator that is executed by the at least one hardware processor may compress the report that includes the test data to generate a compressed report. The QR code generator may generate, based on an analysis of the compressed report, a QR code that includes the compressed report. A display generator that is executed by the at least one hardware processor may generate a display of the QR code that includes the compressed report.
Systems and methods are provided for generating sets of candidates comprising images and places within a threshold geographic proximity based on geographic information associated with each of the plurality of images and geographic information associated with each place. For each set of candidates, the systems and methods generate a similarity score based on a similarity between text extracted from each image and a place name, and the geographic information associated with each image and each place. For each place with an associated image as a potential match, the systems and methods generate a name similarity score based on matching the extracted text of the image to the place name, and store an image as place data associated with a place based on determining that the name similarity score for the extracted text associated with the image is higher than a second predetermined threshold.
Claim verification is facilitated by identifying a selection of textual content within a user interface, accessing a claim detection module, inputting the textual content into the claim detection module to detect one or more claims within the selection of textual content, accessing an evidence extraction module, using the evidence extraction module to automatically search one or more reference repositories for one or more related references that have content that is related to the detected one or more claims, automatically determining whether the content in the one or more related references supports or refutes the one or more claims using a claim verification module, and, in response to determining a set of references of the one or more related references supports or refutes the one or more claims, presenting a support indicator or a refute indicator within the user interface in association with the one or more claims.
Methods, systems, and computing devices for visualizing natural language processing algorithm processes are described herein. A plurality of categories may be determined. Each color of a plurality of colors may correspond to the categories. Text content may be processed using a natural language processing algorithm. Confidence values indicating, for each of a plurality of portions of the text content, a degree of confidence corresponding to one or more of the plurality of categories may be determined. Display colors may be determined based on the confidence values. A user interface comprising a visualization of the text content may be displayed, and the user interface may be configured to show each portion of the text content using a display color such that the user interface indicates changes in confidence across the plurality of characters.
A language determination model may be applied to select a first machine learning model or a second machine learning model to analyze the input text. The first machine learning model trained to analyze text in a first language, the second machine learning model trained to analyze text in a second language, and the input text may be in a third language. The language determination model may select the first machine learning model based on the first machine learning model having a better performance analyzing text in the third language than the second machine learning model. The language determination model may be updated based on an actual performance of the first machine learning model analyzing the input text. Moreover, the first machine learning model may be subject to additional training if the actual performance of the first machine learning model analyzing the input text is below a threshold value.
A system for automatically labeling data using conceptual descriptions. In one example, the system includes an electronic processor configured to generate unlabeled training data examples from one or more natural language documents and, for each of a plurality of categories, determine one or more concepts associated with a conceptual description of the category and generate a weak annotator for each of the one or more concepts. The electronic processor is also configured to apply each weak annotator to each training data example and, when a training data example satisfies a weak annotator, output a category associated with the weak annotator. For each training data example, the electronic processor determines a probabilistic distribution of the plurality of categories. For each training data example, the electronic processor labels the training data example with a category having the highest value in the probabilistic distribution determined for the training data example.
A computing device is described which has a memory storing text input by a user. The computing device has a processor which is configured to send the text to a prediction engine having been trained to predict images from text. The processor is configured to receive from the prediction engine, in response to the sent text, a plurality of predictions, each prediction comprising an image predicted as being relevant to the text. The processor is configured to insert a plurality of the images into the text on the basis of criteria comprising one or more of: ranks of the predictions, categories of the images, rules associated with one or more of the images, user input, a trigger word. The processor is configured to insert the plurality of images into the text sequentially, in an order corresponding to ranks of the predictions.
Methods and systems of displaying a first string of characters and a second string of characters on an electronic display in a manner to reduce interference between the first and second strings, where a layout of displayed content is preserved, the method including steps of receiving a first string of characters, receiving a second string of characters, identifying a first character in the first string that interferes with a second character in the second string, receiving a modified character corresponding to the first character, rendering the first string and the second string for display, and displaying the first string and the second string on an electronic display. In some embodiments, airspace scaling or deemphasis is used to generate modified characters.
Embodiments of the invention are directed to a computer-implemented method of determining timing constraints of a first component-under-design (CUD). The computer-implemented method includes accessing, using a processor, a plurality of timing constraint requirements configured to be placed on the first CUD by one or more second CUDs, wherein each of the plurality of timing constraint requirements is specifically designed for the CUD. The processor is used to perform a comparative analysis of each of the plurality of timing constraints to identify a single timing constraint that satisfies each of the plurality of timing constraints.
A method and system (and/or a total simulation) have at least first and second sub-systems. An interconnection network is determined, which couples and determines the first and the second sub-systems at a coupling. First sub-system information of the first sub-system and second sub-system information of the second sub-system are determined. An execution sequence is selected, by which it is determined, in which sequence relative to each other a first and a second parameter outputs are determined. Furthermore, extrapolation methods are determined, by which first and second parameter inputs are determinable during a macro step size (e.g. between the coupling times). The macro step size prescribes-coupling times, at which an exchange of corresponding first and second input parameters and of the first and the second output parameters between the sub-systems is performed. The coupling of the sub-systems is configured based on the interconnection network, the first sub-system information and the second sub-system information, the execution sequence, the extrapolation methods, and the macro step size, and the co-simulation is performed.
An illustrative system may comprise a plurality of distributed network nodes hosting a two-dimensional distributed digital ledger. The distributed digital ledger may have a plurality of chains of digital blocks in the two-dimensions, wherein each chain may be associated with a particular functionality (e.g., a first set of integrated circuit processes) and a corresponding level of security. For example, a first chain in the first direction may contain digital blocks containing code differentials of the hardware description language code forming the integrated circuit design. A second chain in a second direction may contain digital blocks containing simulation data records generated during the simulation of the integrated circuit design. The first chain and the second chain may be based upon different cryptographic protocols and therefore may be cryptographically separate from each other.
A digital-twin modeling method for an automated testing pipeline for circuit breakers involves acquiring a three-dimensional digitalized model of each mechanical installation in the testing pipeline; modeling hierarchy according to an actual production process and motion states; performing mesh optimization on the resulting model; designing movements of each said mechanical installation, so as to obtain mechanical movement tracks of the models; combining actual movement logic and cooperative relationship among the movements to edit the mechanical movement tracks of the models; and introducing motion control, so as to conduct motion simulation in a digital-twin scene, thereby implementing virtual movements synchronous with movements of the actual testing pipeline. The method realizes centralized management of production data of the pipeline and realizes remote visualized operation, management and maintenance of the testing pipeline, thereby providing a basic platform for digitalized production of miniature circuit breakers.
A method for controlling the course of a signal flow-based computer program having interconnected software components and at least one DF loop. The following method steps are performed: a) identifying the at least one DF loop and the DF components, each DF component instantaneously imaging at least one DF input signal present at at least one component input onto at least one output signal present at at least one component output, b) determining the maximum possible change of the values of the DF input signals for each unit of time from at least one property of the respective DF input signal, c) activating a delay element in front of the component input where a DF input signal is present whose value has the smallest maximum possible change, and d) running the computer program in accordance with the connection of the software components ascertained in steps a) to c).
The technology described herein uses data in certificate transparency (CT) logs to identify security certificates that are likely to be used for phishing or brand violation. The technology described uses machine vision technology to analyze the domain name in a CT log as a user would view it. The domain name in the CT log is rendered as it might appear in a web browser's address bar. The rendered domain name is then converted to a text string using optical character recognition (OCR). The text string generated by OCR is then analyzed by a brand detection system to determine whether the text string matches a brand name. When a known brand is detected, a trust analysis is performed to determine whether the security certificate in the CT log is actually associated with the brand.
In some examples, a controller includes a secure memory to store a key, and a processor to access a system memory that is external of the controller and that is accessible by a main processor separate from the controller, protect information retrieved from the system memory using the key to produce protected information, and store the protected information in the system memory.
A data storage device and method for securely storing and retrieving data at a data storage device. The disclosure includes a reverse encryption where a decryption function is applied to plaintext data to generate ciphertext data. Conversely, the disclosure includes applying an encryption function to ciphertext data to generate plaintext data. This involves using an encryption function that is inverse, and symmetric, to the decryption function. In some specific examples, this includes sharing cryptography engines for securing user data in a storage medium and securing device management data in host memory.
Systems and methods are provided for sharing maps in a collaborative environment using classification-based access control. The generation of and dissemination of maps and/or data within such maps can be governed by classification-based access control, where a user's classification level can determine whether or not maps and/or data within those maps can be seen. In scenarios whether a plurality of users wishes to collaborate on the same map, the systems and methods provided herein generate multiple versions or views of the same map in accordance with different classification levels. In this way, users with different classification levels can nevertheless see the same map and engage in collaborations regarding the same map, while maintaining control of sensitive data.
The present disclosure provides systems and methods for automatically detecting third-party re-identification of anonymized computing devices. The method includes retrieving a log of content items provided to anonymized computing devices identifying a first content item provided to a plurality of anonymized computing devices within a first predetermined time period; for each anonymized computing device of the plurality of anonymized computing devices, generating a set of identifications of second content items retrieved by the anonymized computing device prior to receiving the first content item within a second predetermined time period; determining that signals or combinations of signals with a highest predictive ability between a first set of identifications and a second set of identifications exceeds a threshold; identifying a provider of the first content item; and if the signals or combinations of signals with the highest predictive ability exceeds the threshold, preventing, transmission of a request of an anonymized computing device for a content item to the identified provider.
A method for authenticating access to private health information (PHI) includes receiving a converted version of a spoken initiation of a retrieval of PHI. The method also includes requesting out-of-band authentication information from a user. The out-of-band authentication information that is requested contains different information than the spoken initiation of the retrieval of the PHI. The method also includes determining whether the out-of-band authentication information received from the user satisfies an authentication criterium associated with the user, obtaining the PHI requested by the user via the spoken initiation provided to the first device responsive to the out-of-band authentication information, and presenting the PHI requested by the user via the first device.
A file is enabled to be downloaded from a web server on behalf of a client browser, via an isolated browser of an RBI server. An isolated browser engine detects the file download and notifies an isolated browser controller. The isolated browser controller determines whether the file download is permitted. Responsive to determining that the file download is not permitted, the file is deleted at the RBI server and a policy event is transmitted to the client browser. Responsive to determining that the file download is permitted, the file is transmitted to the client browser. The file may be streamed to the client browser, or it may be published via an independent web server and a notification is transmitted to the client browser. The client browser is controlled to issue a request to the independent web server to download the file to the client browser.
An illustrative method includes determining an encryption indicator for a first recovery dataset by determining a difference in an amount or percentage of incompressible data associated with the first recovery dataset compared to an amount or percentage of incompressible data associated with a second recovery dataset that temporally precedes the first recovery dataset, the encryption indicator representative of data within or represented by the first recovery dataset that cannot be compressed more than a threshold amount; and performing, based on the encryption indicator for the first recovery dataset, an action with respect to the second recovery dataset, wherein the second recovery dataset is usable to restore data maintained by a storage system to a second state corresponding to a second point in time that temporally precedes a first point in time corresponding to the first recovery dataset.
Disclosed is a method, a device, and/or a system of initiation and transfer of a cryptographic database and/or a cryptographic unit. In one embodiment, an electronic mint generates and mints proofs in an indelible media using a hash function. The proofs and/or an origin hash based on the proofs may be usable to seed a hash chain of a cryptographic bearer database and/or a cryptographic unit with an evolving state hash. The database and/or unit is issued from a treasury server and transferred between user devices as coordinated by a tracking server that utilizes one or more immutable records to track the database and/or unit and retain uniqueness of the bearer database in its most evolved state. Transfers may update user state hash of an evolving user profile usable as an authentication token and/or to show assent to a transaction resulting in a seal hash of acceptance.
A system and method for setting alert thresholds related to cybersecurity ratings of one or more affiliate entities. An example method includes: obtaining entity data including cybersecurity event data for an affiliate entity; calculating a time-series cybersecurity rating for the affiliate entity based on the entity data; associating an alert reporting threshold with the time-series cybersecurity rating, wherein a comparison of the alert reporting threshold to the time-series cybersecurity rating determines a number of alerts reported for the affiliate entity; applying an alternative alert reporting threshold against the time-series cybersecurity rating to determine an alternative number of alerts reported for the affiliate entity; and updating the alert reporting threshold for the time-series cybersecurity rating to the alternative alert reporting threshold.
Aspects of the disclosure relate to preventing unauthorized screen capture activity. A computing platform may detect, via an infrared sensor associated with a computing device, an infrared signal from a second device attempting an unauthorized image capture of contents being displayed by a display device of the computing device. Subsequently, the computing platform may determine, via the computing platform, the contents being displayed by the display device. Then, the computing platform may retrieve a record of the contents being displayed by the display device. Then, the computing platform may determine a risk level associated with the infrared signal. Subsequently, the computing platform may perform, via the computing platform and based on the risk level, a remediation task to prevent the unauthorized image capture.
A method, system, and computer program product for performing microservice-aware reference policy checking that accept stateful security policies. The method may include receiving a security policy for a container that is part of a microservice architecture. The method may also include obtaining a first effect graph of the security policy, resulting in a security model for the container. The method may also include identifying execution behavior of the container. The method may also include generating a second effect graph of the execution behavior of the container, where the generating includes summarizing operations and interactions between entities in the execution behavior and results in a behavioral model. The method may also include comparing the behavioral model to the security model. The method may also include determining whether the container has deviated from the security policy based on the comparing. The method may also include enforcing the security policy against the container.
Execution of an application in an application-level sandbox is disclosed. A request to launch an application is received by an operating system executing on a device. A determination is made that a stored copy of the application should be executed within an application-level sandbox. The stored copy of the application is executed in the application-level sandbox.
Systems and methods for a passive wireless multi-factor authentication approach are provided. According to one embodiment, a user authentication request is received by a first computing device connected to a private network. The user authentication request is sent by an endpoint protection suite running on the first computing device to an authentication device associated with the private network. A proximity of a second computing device, which was previously registered with the authentication device to be used as a factor of a multi-factor authentication process involving the first computing device, is determined by the authentication device in relation to one or more wireless access points of a wireless network of the private network. The user authentication request is then processed by the authentication device based on the proximity.
Methods, devices and systems for enabling a specific registered user to log into a computerized system having multiple registered users by continuously staring at a display associated with the computerized system for at least a pre-determined threshold duration, without requiring any input other than staring to initiate the login process, and without requiring the user to provide any additional login information or authentication information.
The present disclosure provides systems and methods for timed unlocking and locking of hardware intellectual properties obfuscation. One such method includes determining whether received key inputs match a functional key sequence of an integrated circuit or a test key sequence of the integrated circuit; permanently enabling operation of the integrated circuit responsive to the received key inputs being determined to be a functional key sequence for permanently enabling operation of the integrated circuit; temporarily enabling operation of the integrated circuit responsive to the received key inputs being determined to be the test key sequence for temporarily enabling operation of the integrated circuit to perform testing of the functionality and disable thereafter; and locking sequential logic and combinational logic of the integrated circuit if the received key inputs are determined to not be either the functional key sequence or the test key sequence. Other systems and methods are also provided.
In some embodiments, a method can include receiving first images of produce. The method can further include executing a first machine learning model to generate second images of produce based on the first images of produce. The first images of produce can include (1) images of non-bagged produce or (2) images of bagged produce. The second images of produce can include the other of (1) images of non-bagged produce or (2) images of bagged produce. The method can further include training a second machine learning model based on the first images of produce and the second images of produce. The method can further include executing, after the training, the second machine learning model to classify as a bagged produce or a non-bagged produce an image not included in the first images and not included in the second images.
Disclosed are a system, method and apparatus for classification of data in a machine learning system. In one aspect, a method for classification of data in a machine learning system through one or more computer processors is disclosed. Further, generating, through one or more computer processors, a data classifier using a first dataset and determining an accuracy value of the data classifier to achieve a predefined model accuracy threshold. Still further, iterating, through one or more computer processors, calibration of the first dataset based on a set of parameters until the accuracy value matches or exceeds the predefined model accuracy threshold value. Further, the calibration comprises a user input to indicate a correctness of a presented subset of data from a second dataset and using the above to generate an enhanced data classifier for the classification of data.
A calculation apparatus according to an embodiment includes matrix multiplication circuitry, time evolution circuitry, management circuitry, and output circuitry. The matrix multiplication circuitry calculates N second intermediate variables at a first time point by matrix multiplication between N (N>=2) first intermediate variables at the first time point and a preset coefficient matrix in N rows and N columns. The time evolution circuitry calculates N first variables at a second time point and N first intermediate variables at the second time point, the second time point being a time point following one sampling period after the first time point. The management circuitry increments time point from a start time point for each sampling period and controls the above circuitry to perform a process for each time point. The output circuitry outputs N first variables at a preset end time point.
Methods of generating websites using any combination of remotely and locally stored content are contemplated. Content is procured by a user on a client computer, and a request to add that content to a source folder is sent to a server. The server adds the content to the source folder, where it is made available for website creation. When a client requests creation of a website using the contents of a source folder, the server then generates that website. In some embodiments, the website can be generated according to a user-selected theme or a default theme.
Various embodiments provide for systems, methods, and computer-readable storage media that improve media content search functionality and curation of media content. For instance, various embodiments described in this document provide features that can present media content items in the form of dynamic collection of media content items upon a user typing into a search bar. In another instance, various embodiments described herein improve media content search functionality by ranking user facing search features using input signals.
Training a machine learning language model to generate clarification questions for use in conversational search, including: Obtaining multiple dialogs between users and agents, each dialog including messages exchanged between a user and an agent, wherein one of the messages of each dialog includes a reference to a solution document provided by the agent. For each of the dialogs, operating a search engine to retrieve a text passage, relevant to at least one of the messages of the respective dialog, from the respective solution document. Training a machine learning language model to generate a new clarification question given at least one new message and multiple new text passages, wherein the training is based on a training set which comprises, for each of the dialogs: said at least one of the messages of the respective dialog, and the text passage retrieved for the respective dialog.
Systems and methods for training a machine learning (ML) ranking model to rank genealogy hints are described herein. One method includes retrieving a plurality of genealogy hints for a target person, where each of the plurality of genealogy hints corresponds to a genealogy item and has a hint type of a plurality of hint types. The method includes generating, for each of the plurality of genealogy hints, a feature vector having a plurality of feature values, the feature vector being included in a plurality of feature vectors. The method includes extending each of the plurality of feature vectors by at least one additional feature value based on the number of features of one or more other hint types of the plurality of hint types. The method includes training the ML ranking model using the extended plurality of feature vectors and user-provided labels.
A video management system may send time-stamped metadata corresponding to a video stream across a communication path having a limited bandwidth. Time-stamped metadata for a first reference video frame which identifies objects in the reference frame may be generated, and sent across the communication path. Time-stamped metadata for each of a plurality of first delta video frames following the first reference video frame may be generated, the time-stamped metadata for each of the plurality of first delta video frames may identify changes in detected objects relative to the objects identified in the time-stamped metadata for the first reference video frame. The time-stamped metadata for each of the plurality of first delta video frames may be sent across the communication path.
In one embodiment, a storage device that is installable in an electronic apparatus includes a first communication interface for connecting the electronic apparatus to the storage device, a nonvolatile memory for storing data and data management table storing a data size and address information for the data stored in the nonvolatile memory, and a processor configured to change at least one piece of data stored in the nonvolatile memory without changing file management information stored in the data management table. The processor is configured to change the stored data without receiving an instruction to do so from the electronic apparatus through the first interface.
Systems, methods, and devices are provided for determining descriptive object names for display on a graphical user interface (GUI). The method may include detecting an input to insert an object into a portion of an application file. The object includes content and has a first metadata name. The method may also include generating a classification label for the object using a content classifier machine learning model, such that the classification label describes the object contents. The method may also further involve updating the first metadata name of the object to a second metadata name that comprises the classification label. Further, the method may also include displaying the second metadata name of the object in an object list of the application file. The object list may enumerate one or more objects of the portion of the application file.
Systems, methods, and computer-readable media for providing entity relation extraction across sentences in a document using distant supervision are disclosed. A computing device can receive an input, such as a document comprising a plurality of sentences. The computing device can identify syntactic and/or semantic links between words in a sentence and/or between words in different sentences, and extract relationships between entities throughout the document. A knowledge base (e.g., a table, chart, database etc.) of entity relations based on the extracted relationships can be populated. An output of the populated knowledge base can be used by a classifier to identify additional relationships between entities in various documents. Machine learning can be applied to train the classifier to predict relations between entities. The classifier can be trained using known entity relations, syntactic links and/or semantic links.
A system and method of analyzing data receives a user-specified selection of a data source, a user-specified selection of a type of data representation, and a user-specified description of a view to be constructed in accordance with the user-specified selection of the type of data representation. An application program interface (API) function generates a multidimensional query based on the user-specified type of data representation and the user-specified description of the view to be constructed, and submits the multidimensional query to the an On-line Analytical Processing (OLAP) server. The application program interface (API) function receives a multidimensional response from the OLAP server containing results acquired by the multidimensional query of the data source, and generates the view based on the results contained in the multidimensional response and in accordance with the user-specified selection of the type of data representation and the user-specified description of the view.
The present disclosure relates to systems, methods, and non-transitory computer-readable media that estimate the overlap between sets of data samples. In particular, in one or more embodiments, the disclosed systems utilize a sketch-based sampling routine and a flexible, accurate estimator to determine the overlap (e.g., the intersection) between sets of data samples. For example, in some implementations, the disclosed systems generate a sketch vector—such as a one permutation hashing vector—for each set of data samples. The disclosed systems further compare the sketch vectors to determine an equal bin similarity estimator, a lesser bin similarity estimator, and a greater bin similarity estimator. The disclosed systems utilize one or more of the determined similarity estimators in generating an overlap estimation for the sets of data samples.
A portable electronic device is disclosed comprising data processing means and a data repository containing: data records representative of locations relevant to or within a digital map; and data representative of an index associating words contained in the data records with the records in which those words appear. The device further comprises means for, in relation to a received search query including a search string, processing the search string to provide one or more search words; querying the index to identify data records containing the or each search word; and generating a rank for each of the one or more identified data records indicative of the relevance of each identified data record to the search query.
Querying a distributed database including a table sharded into shards distributed to database instances includes receiving a data-query that includes an aggregation clause on a first column and a grouping clause on a second column; obtaining and outputting results data. Obtaining the results data includes receiving, by a query coordinator, intermediate results data; and combining, by the query coordinator, the intermediate results to obtain the results data. Receiving the intermediate results data includes receiving, from a first database instance, first aggregation values indicating, on a per-group basis in accordance with the grouping clause, a respective aggregation value of distinct values of the first column in accordance with the aggregation clause, and receiving, from a second database instance, second aggregation values indicating, on a per-group basis in accordance with the grouping clause, a respective aggregation value of distinct values of the first column in accordance with the aggregation clause.
Some embodiments provide a program that queries a database for a subset of a plurality of records in the database. Each record in the plurality of records includes a value for a field. The program further samples the subset of the plurality of records to identify a set of records in the subset of the plurality of records. The program also sorts the set of records based on the value for the field in each record in the set of records. The program further determines a first value for the field of a first record in the sorted set of records and a second value for the field of a second record in the sorted set of records forms a slope that is greater than or equal to a defined slope. The program determines a threshold value for the subset of the plurality of records based on the first record.
Exemplary methods, apparatuses, and systems include a file system process reading a first node in a tree data structure from a first memory. The first node includes a first approximate membership query data structure (“AMQ”), a first plurality of child pointers, a first plurality of pivot values, and a first buffer. The file system process determines that the first plurality of child pointers exceeds a maximum size. Using a pivot value in the first plurality of pivot values, the file system process splits the first node into a second node and a third node. The file system process uses the pivot value to split the first buffer into a second buffer and a third buffer. Using the pivot value and the first AMQ, the file system process generates a second AMQ and a third AMQ.
A method, system and computer program product are disclosed for determining a shortest path between two nodes of a graph, where the graph is represented in one or more tables of a relational database as a plurality of records identifying edges between pairs of connected nodes in the graph. A request specifies a source node (or set of source nodes), a target node (or set of target nodes) and a maximum path length L. Each path length l, from 1 to L, is iteratively tested by first generating a query comprising a sequence of join operations for that path length, and secondly decomposing the join operations into a sequence of one or more tree-structured queries comprising semi-join operations. Each tree-structured query when executed as a sequence of semi-join operations will return either an empty result set, indicating that no shortest path exists at that path length, or a non-empty result set which identifies all edges at step k of each shortest path of length l, where 1≤k≤l. If all of the tree-structured queries for a path length l return non-empty result sets, the shortest paths of length l can be constructed from the result sets with each result set specifying the edges at a particular step along the shortest path.
A text-to-database neural network architecture is provided. The architecture receives a natural language question and a database schema and generates a serialized question-schema representation that includes a question and at least one table and at least one field from the database schema. The serialized question-schema representation is appended with at least one value that matches a word in the natural language question and at least one field in a database picklist. An encoder in the architecture generates question and schema encodings from the appended question-schema representation. Schema encodings are associated with metadata that indicates a data type of the fields and whether fields are associated with primary or foreign keys. A decoder in the architecture generates an executable query from the question encodings and schema encodings.
A method and system for streaming data from portable storage devices. Specifically, the disclosed method and system implement iterative data streaming from a portable storage device for remote storage operations, while requiring zero over-provisioning storage space for buffering incoming write operations to the portable storage device.
Disclosed herein are various embodiments for blockchain service based application generator. An embodiment operates by determining a blockchain service configured to access, store, and receive updates to transactional data of the blockchain service. An enhanced data object including a wrapper with one or more additional properties corresponding to an original data object of the blockchain service is generated. The enhanced data object is transformed into a data protocol object. Metadata is generated based on the data protocol object. A data protocol service is generated based on the metadata. The application interface is configured based on the metadata, wherein the application interface is configured to communicate with both the data protocol service and the blockchain service. The application interface is provided to a user who is enabled to update the transactional data through the application interface.
An example operation may include one or more of storing chaincode that comprises a plurality of statements to be executed, receiving a message to endorse a blockchain storage request, delaying execution of one or more statements within the chaincode based on content included within the chaincode, endorsing the blockchain storage request via execution of remaining statements included in the chaincode which are not delayed to generate an endorsement result, and transmitting the endorsement result to a node.
Systems and methods for data enrichment as a service are described herein. A service provider of a computing resource service provider may provide services for enriching data with additional data. The service provider may receive a set of enrichment parameters. The enrichment parameters may be used to determine whether data obtained by the service provider is eligible for enrichment. If data is eligible for enrichment, the data may be enriched according to the enrichment parameters, thereby generating enriched data. The enriched data may be stored in association with the data.
A data migration and integration system is disclosed. In various embodiments, the system includes a memory configured to store a mapping from a source schema to a target schema; and a processor coupled to the memory and configured to migrate to a target schema an instance of source data organized according to the source schema, including by using a chase engine to perform an ordered sequence of steps comprising adding a bounded layer of new elements to a current canonical chase state associated with migrating the source data to the target schema; adding coincidences associated with one or more of the target schema data integrity constraints and a mapping from the source schema to the target schema; and merging equal elements based on the coincidences; and repeat the preceding ordered sequence of steps iteratively until an end condition is met.
The present disclosure is directed to a modified GraphQL server that enables application developers to define custom GraphQL schema fragments. For example, a developer may provide the GraphQL server with a GraphQL standard definition language (SDL) file having annotations that indicate that a customized data-handling script, such as a custom data-fetching script or a custom type resolver script, be called for handling certain data types or fields. These customized data-handling scripts are resolved and called at runtime based on the annotations in the GraphQL SDL file. By enabling developers to define schema fragments in the SDL language and implement data-handling scripts in a suitable scripting language, schema portability can be maintained across client instances, as well as instance release versions. Additionally, the disclosed approach enables enhanced modularity and reuse of previously defined data types and data-handling scripts, which increases developer productivity and reduces errors during application development.
Disclosed are systems and methods for requesting operations at a remote server utilizing a network file system. A client may encapsulate a request for a cache coherency mechanism as an encapsulated message and provide the encapsulated message to a network file system executing on the client. The network file system may be configured to prevent the request for server functionality from being transmitted to the remote server. The client may also cause, via the network file system, the encapsulated message to be transmitted to the remote server.
At least one unique collection of storage artifacts can be specified to indicate that the storage artifact is a member of the unique collection. Each storage artifact can be a discrete object comprising digitally encoded content that is stored as a node within a tree structure of a tangible storage medium. The collection can be referenced by a set of different storage artifacts to form a collection of related storage artifacts. Each storage artifact can correspond to different collections, wherein membership within a collection is independent of a storage path within the tree structure. A file management action relating to the storage artifact can be performed. The file management action can be dependent upon the storage artifact being a member of the unique collection.
Techniques are provided for tiering snapshots to archival storage in remote object stores. A restore time metric, indicating that objects comprising snapshot data of snapshots created within a threshold timespan are to be available within a storage tier of a remote object store for performing restore operations, may be identified. A scanner may be executed to evaluate snapshots using the restore time metric to identify a set of candidate snapshots for archival from the storage tier to an archival storage tier of the remote object store. For each candidate snapshot within the set of candidate snapshots, the scanner may evaluate metadata associated with the candidate snapshot to identity one or more objects eligible for archival from the storage tier to the archival storage tier, and may archive the one or more objects from the storage tier to the archival storage tier.
A method for data storage includes specifying a plurality of File Systems (FSs) for use by multiple clients, including assigning to the FSs both respective global identifiers and respective client-specific names. The plurality of FSs is managed using the global identifiers, and files are stored for the clients in the FSs using the client-specific names.
Systems and methods for reducing latency of probing operations of remotely located linear hash tables are described herein. In an embodiment, a system receives a request to perform a probing operation on a remotely located linear hash table based on a key value. Prior to performing the probing operation, the system dynamically predicts a number of slots for a single read of the linear hash table to minimize total cost for an average probing operation. The system determines a hash value based on the key value and determines a slot of the linear hash table to which the hash value corresponds. After predicting the number of slots, the system issues an RDMA request to perform a read of the predicted number of slots from the linear hash table starting at the slot to which the hash value corresponds.
A computer comprising a plurality of interconnected processing nodes arranged in multiple stacked layers forming a multi-face prism is provided. Each face of the prism comprises multiple stacked pairs of nodes. Said nodes are connected by at least two intralayer links. Each node is connected to a corresponding node in an adjacent pair by an interlayer link. The corresponding nodes are connected by respective interlayer links to form respective edges. Each pair forms part of a layers, each layer comprising multiple nodes, each node connected to their neighbouring nodes in the layer by at least one of the intralayer links to form a ring. Data is transmitted around paths formed by respective sets of nodes and links, each path having a first portion between a first and second endmost layers, and a second portion provided between the second and first endmost layers and comprising one of the edges.
The embodiments of the present disclosure relate to a device and method for inspecting process and an electronic control device. The device for inspecting process may include a converting controller configuring to be controlled for, when a preset operation is performed in a serial communication, converting into at least one process monitoring message by inputting a specific value into a dummy area included in at least one message corresponding to the preset operation, and an inspecting controller configuring to be controlled for inspecting a process based on the process monitoring message.
Techniques are disclosed relating to controlling cache replacement. In some embodiments, a computing system performs multiple searches of a data structure, where one or more of the searches traverse multiple links between elements of the data structure. The system may cache, in a traversal cache, traversal information that is usable by searches to skip one or more links traversed by one or more prior searches. The system may store tracking information that indicates a location in the traversal cache at which prior traversal information for a first search is stored. The system may select, based on the tracking information, an entry in the traversal cache for new traversal information generated by the first search. The selection may override a default replacement policy for the traversal cache, e.g., to select the location in the traversal cache to replace the prior traversal information with the new traversal information.
Nonsequential readahead based on data access patterns, the method comprising: determining a set of access patterns for stored content; determining, based on the set of access patterns, a list of storage locations for content expected to be used; and prefetching, based on the list of storage locations for content expected to be used, one or more data objects.
Responsive to receiving a table flush command, a first portion of an address mapping table is identified. A first flush operation with respect to a first portion of the address mapping table is performed. Responsive to receiving at least one memory access command, flush operations for a subsequent portion of the address mapping table is suspended. At least one memory access operation specified by the at least one memory access command is performed. A second flush operation with respect to the subsequent portion of the address mapping table is performed.
A method, computer program product, and computer system for identifying, by a computing device, content in a first bucket in a first cache. It may be determined that a first portion of the content in the first bucket is a duplicate, wherein a second portion of the content in the first bucket may be unique. The first portion of the content in the first bucket may be deduplicated from the first cache. The second portion of the content may be stored in a second bucket in a second cache.
Disclosed in some examples are methods, systems, devices, and machine-readable mediums that use parallel hardware execution with software co-simulation to enable more advanced debugging operations on data flow architectures. Upon a halt to execution of a program thread, a state of the tiles that are executing the thread are saved and offloaded from the HTF to a host system. A developer may then examine this state on the host system to debug their program. Additionally, the state may be loaded into a software simulator that simulates the HTF hardware. This simulator allows for the developer to step through the code and to examine values to find bugs.
A method of monitoring execution of computer instructions includes receiving data items representing real-time measurements of side-channel information emanating from execution of computer instructions, each data item forming a value of a corresponding dimension of a side-channel information vector, receiving, for two or more of the dimensions of the side-channel vector, classifiers that assign the corresponding values of a side-channel vector to classes, and classifying the data items in accordance with the received classifiers, wherein an orthogonal distance of the data item from the classifier indicates a confidence value of the classification, generating a combined a confidence value for the side-channel information vector a, and outputting a signal if a confidence value indicates affiliation to a selected one of the two classes with a predetermined probability. The method conducts a self-test by generating a combined confidence value based to ensure correct outputting of the confidence value.
In non-limiting examples of the present disclosure, systems, methods and devices for detecting and classifying service issues associated with a cloud-based service are presented. Operational event data for a plurality of operations associated with the cloud-based application service may be monitored. A statistical-based unsupervised machine learning model may be applied to the operational event data. A subset of the operational event data may be tagged as potentially being associated with a code regression, wherein the subset comprises a time series of operational event data. A neural network may be applied to the time series of operational event data, and the time series of operational event data may be flagged for follow-up if the neural network classifies the time series as relating to a positive code regression category.
Disclosed herein are systems and method for determining data storage insurance policies. In an exemplary implementation, a method comprises receiving a request to add a data storage insurance policy to a plurality of data files. The method comprises extracting data file attributes and determining a data recovery score for each respective data file based on a uniqueness, criticality, and/or importance of the respective data file. The method comprises determining a hardware score for each of a plurality of performance tiers comprising at least one storage server, based on an available capacity, a performance cost, and/or data recovery scores of data files currently stored at each of the plurality of performance tiers. The method comprises selecting and executing a data storage insurance policy for the respective data file based on a plurality of data recovery rules and/or the comparison of the data recovery score and the hardware score.
A computer-implemented method at a data management system comprises; retrieving start and end times of a backup of a database; retrieving time stamps of log backups of the database; retrieving sequence numbers of the log backups; generating a graphical user interface illustrating a timeline of availability of database restoration and unavailability; making a second backup of the database; illustrating, on the graphical user interface during the making, pending availability of the second database backup; receiving a command to restore the database at an available time as illustrated by the graphical user interface; and restoring the database.
Methods, systems, and devices for error correction management are described. A system may include a memory device that supports internal detection and correction of corrupted data, and whether such detection and correction functionality is operating properly may be evaluated. A known error may be included (e.g., intentionally introduced) into either data stored at the memory device or an associated error correction codeword, among other options, and data or other indications subsequently generated by the memory device may be evaluated for correctness in view of the error. Thus, either the memory device or a host device coupled with the memory device, among other devices, may determine whether error detection and correction functionality internal to the memory device is operating properly.
A Processing-In-Memory (PIM) device includes a first storage region and a multiplication/accumulation (MAC) calculator. The first storage region configured to store a first data. The MAC operator configured to execute a MAC calculation on the first data and second data in an MAC mode. When an error exists in the first data, the MAC operator compensates multiplication result data generated by a multiplying calculation of the first data and the second data and executes an adding calculation of the compensated multiplication result data.
An electronic device for diagnosing a fault of a plurality of external devices is disclosed. The electronic device comprises a communication unit and a processor. The processor receives, from the plurality of external devices, information related to an operation of the plurality of external devices through the communication unit; on the basis of the information related to the operation of any one of the plurality of external devices, determines whether any external device is operating abnormally; when the external device is operating abnormally, diagnoses the cause of the abnormality on the basis of the information related to the operation of the one external device and information related to an operation of another external device of the plurality of external devices that is relevant to the operation of the one external device; and provides, via the communication unit, information on the diagnosed abnormality to the at least one of the one external device and a communication device of a user of the external devices.
A computer program product and computer-implemented method include various operations. The operations include periodically obtaining a subset of a first failure data capture file from a baseboard management controller, analyzing the subset of the first failure data capture file to identify a performance degradation in one or more services performed by the baseboard management controller, and obtaining a complete copy of the first failure data capture file from the baseboard management controller in response to identifying the performance degradation, wherein the complete copy of the first failure data capture file is obtained from the baseboard management controller prior to the performance degradation reaching a performance level that triggers an automatic reset of the baseboard management controller. The operations may further include sending a notification to a user, wherein the notification identifies that the baseboard management controller has experienced the performance degradation.
The present disclosure relates to a method of mitigating errors in quantum circuits constituting a quantum computer, which includes: obtaining a plurality of pieces of first probability matrix information according to a sequence of quantum gates constituting a quantum circuit; obtaining a plurality of pieces of second probability matrix information according to a sequence of quantum gates constituting the quantum circuit; generating a plurality of pieces of differential matrix information based on the plurality of pieces of first and second probability matrix information; and generating error mitigation matrix information corresponding to the quantum circuit using the plurality of pieces of differential matrix information.
The described technology relates to integrating events electronically scheduled in enterprise web applications and other event management applications. An improved capability is provided for an event management application like, for example, Microsoft's Outlook™ to provide the user with additional useful information and/or resources associated with scheduled events such as, but not limited to, meetings. Improved capabilities are provided to the enterprise web application clients based upon integration with event applications such as Outlook. Embodiments use a unique identifier generated for an event scheduled in one application for associating corresponding event information in the second application, such that the scheduled event calendars in the first and second applications can be synchronized without duplicating the event information between the two applications.
The disclosed embodiments include a method for providing cloud computing semantic layer. The method comprises receiving a description of a semantic layer operation performed by a semantic layer, the description including multiple implementations of the semantic layer operation, the multiple implementations differing in at least one of cloud operations used or cloud computing platforms used; receiving a request that indicates performance of the semantic layer operation; receiving first resource usage indications corresponding to the cloud operations, wherein the first resource usage indications comprise direct or indirect indications of least one of a storage amount, a compute amount, a number of transactions, a bandwidth, a number of application programming interface calls, or an application or database type associated with each of the cloud operations; selecting a first one of the multiple implementations; and communicating with the first one of the cloud providers to perform the semantic layer operation.
A cloud capacity system enables calculation and tracking of cloud capacity metrics for data center pods. The system includes a “Cloud Capacity Snapshot” table having a number of different cloud capacity columns; a “Cloud Capacity Query” table that stores a respective, customizable query for each of the cloud capacity columns defining criteria for selecting and combining data to calculate the corresponding cloud capacity metric value; and a “Cloud Capacity URLs” table that stores cloud capacity universal resource locator (URLs). Each cloud capacity URL embodies or encodes a respective cloud capacity query of the “Cloud Capacity Query” table for a given combination of a particular cloud capacity column and a particular pod in the “Cloud Capacity Snapshot” table. As such, by executing the queries encoded in the “Cloud Capacity URLs” table, each cloud capacity field of the “Cloud Capacity Snapshot” table is populated with the corresponding cloud capacity metric value.
A method of automating emulations is provided. The method comprising collecting publicly available network data over a predefined time interval, wherein the collected network data might comprise structured and unstructured data. Any unstructured data is converted into structured data. The original and converted structured data is stored in a database and compared to known network vulnerabilities. An emulated network is created according to the collected network data and the comparison of the structured data with known vulnerabilities. Virtual machines are created to run on the emulated network. Director programs and guest actor programs are run on the virtual machines, wherein the actor programs imitate real user behavior on the emulated network. The director programs deliver task commands to the guest actor programs to imitate real user behavior. The imitated behavior is presented to a user via an interface.
It is disclosed a resource sharing manager, RSM, operative to provide efficient utilization of central processing units, CPUs, within virtual servers, each virtual server having an operating system, OS. The RSM dynamically obtains (902) information about ownership and sharable status of said CPUs, and dynamically determines (904) which CPUs are sharable to which virtual servers. The RSM obtains (906) information about that one or more sharable CPUs are available; and obtains (908) information about that one or more virtual servers require more processing resources. The RSM also assigns (910) a first CPU of said sharable CPUs when available, to a first virtual server of said virtual servers. Information about ownership and sharable status of the first CPU, is hence provided to the OS of the first virtual server. Overhead is reduced by circumventing a hypervisor when sharing CPUs in virtual servers. An increase in efficiency of task execution is provided.
A method for dynamically generating at least one contextual user interface element within a user interface and establishing a connection between a first computing device associated with a user of the user interface and a second computing device associated with a contact center agent includes analyzing, by a user interface display component executing on a first computing device, a uniform resource locator of a web page while a user views the web page on a second computing device. The user interface display component identifies a plurality of support topics, accesses profile data associated with the user, and determines whether the profile data identifies an existing travel reservation. The user interface display component generates a first subset of the plurality of support topics and modifies a user interface displayed by the web page to include a user interface element associated with a support topic in the first subset.
Techniques for generating a user interface (UI) for a public safety user are provided. An event trigger may be received at a computing device associated with a public safety user. The event trigger may be associated with a public safety event. Historical interaction with at least one UI object by the public safety user when handling previous event triggers of the same type as the received event trigger may be determined. The historical interaction may be retrieved from a historical UI interaction data store. UI objects that the public safety user may interact with to handle the received event trigger may be identified based on the determined historical interaction. A UI may be generated to handle the received event trigger, the UI to handle the received event trigger including the identified UI objects.
A method for verifying data plane programs is provided in some embodiments. Because the behavior of a data plane program (e.g., a program written in the P4 language) is determined in part by the control plane populating match-action tables with specific forwarding rules, in some embodiments, programmers are provided with a way to document assumptions about the control plane using annotations (e.g., in the form of “assertions” or “assumptions” about the state based on the unknown control plane contribution). In some embodiments, annotations are added automatically to verify common properties, including checking that every header read or written is valid, that every expression has a well-defined value, and that all standard metadata is manipulated correctly. The method in some embodiments translates programs from a first language (e.g., P4) to a second language (e.g., Guarded Command Language (GCL)) for verification by a satisfiability modulo theory (SMT) solver.
Disclosed Methods, Apparatus, and articles of manufacture to dynamically enable and/or disable prefetchers are disclosed. An example apparatus include an interface to access telemetry data, the telemetry data corresponding to a counter of a core in a central processing unit, the counter corresponding to a first phase of a workload executed at the central processing unit; a prefetcher state selector to select a prefetcher state for a subsequent phase based on the telemetry data; and the interface to instruct the core in the central processing unit to operate in the subsequent phase according to the prefetcher state.
An apparatus and method for efficient microcode patching. For example, one embodiment of an apparatus comprises: a package comprising one or more integrated circuit dies, the one or more integrated circuit dies comprising: a plurality of cores; and a security controller coupled to the plurality of cores, a first core of the plurality of cores comprising: a decoder to decode a microcode patching instruction, the microcode patching instruction comprising an operand to be used to identify an address; and execution circuitry to execute the microcode patching instruction, wherein responsive to the microcode patching instruction, the execution circuitry and/or security controller are to: retrieve a microcode patch from a location in memory based on the address, validate the microcode patch, apply the microcode patch to update or replace microcode associated with the one or more integrated circuit dies, and transmit the microcode patch to a persistent storage device; wherein the microcode patch is to be subsequently retrieved from the persistent storage device by one or more external security controllers of one or more external integrated circuit dies, the one or more external security controllers to cause the microcode patch to be applied to update or replace microcode associated with the one or more external integrated circuit dies.
The present disclosure provides a computation device. The computation device is configured to perform a machine learning computation, and includes an operation unit, a controller unit, and a conversion unit. The storage unit is configured to obtain input data and a computation instruction. The controller unit is configured to extract and parse the computation instruction from the storage unit to obtain one or more operation instructions, and to send the one or more operation instructions and the input data to the operation unit. The operation unit is configured to perform operations on the input data according to one or more operation instructions to obtain a computation result of the computation instruction. In the examples of the present disclosure, the input data involved in machine learning computations is represented by fixed-point data, thereby improving the processing speed and efficiency of training operations.
Disclosed are systems and methods related to providing for the optimized software implementations of artificial intelligence (“AI”) networks. The system receives operations (“ops”) consisting of a set of instructions to be performed within an AI network. The system then receives microkernels implementing one or more instructions to be performed within the AI network for a specific hardware component. Next, the system generates a kernel for each of the operations. Generating the kernel for each of the operations includes configuring input data to be received from the AI network; detecting a specific hardware component to be used; selecting one or more microkernels to be invoked by the kernel based on the detection of the specific hardware component; and configuring output data to be sent to the AI network as a result of the invocation of the microkernel(s).
Disclosed herein are systems and methods for deploying and/or rolling back automatic teller machine (ATM) updates. Such methods can store a back-up system image of a client operating system on a virtual hard drive. When an update is deployed from a host operating system to the client operating system, the system update may fail to install properly, and the ATM may shut down. In response, the host operating system can execute instructions to the client operating system to boot from a bootable image on the virtual hard drive. Then, the virtual hard drive can emulate, by a boot loader on the back-up system image, the client operating system on the ATM from the virtual hard drive without loading the client operating system. Then, the virtual hard drive can install a rolled-back operating system on the ATM. The rolled-back operating system can comprise the back-up system image.
A system for developing software provides a graphical user interface on a display of a client device, the graphical user interface displaying features from a library of features for a custom software application, implements simulations of a plurality of the features available for demonstration through the graphical user interface, stores blocks of source code for each feature in a source code repository wherein the blocks are adapted to provide an actual application when compiled by developers, receives from the client device, by a server running a software building component, one or more selected features for the software application, automatically integrates, by the software building component, the one or more selected features to generate an integrated feature set based on attributes of each of the selected features and an inter-feature rules set, and generates an interactive visualization of a navigable prototype of the software application based on the integrated feature set.
Various embodiments of the present invention relate to an apparatus and a method for displaying an electronic document for processing a user's voice command in an electronic device. The electronic device includes an input device; a display; and a processor, wherein the processor may be configured to detect a voice command of a user using the input device, if outputting an electronic document corresponding to the voice command, identify at least one input field in the electronic document, determine guide information based on information of the at least one input field, and display the electronic document comprising the guide information using the display. Other embodiments may be possible.
A display system includes an HMD mounted on a head of a user, and a control device coupled to the HMD, the HMD includes an image display unit, with an outside scene being visible, for displaying a display image overlapping the outside scene, and a main control unit for causing an image display unit to display a display image, and the control device includes a touch panel, and a CO control unit for causing a related image related to a display content of the display image to be displayed on the touch panel.
An image forming system includes a print system and a management server. The print system includes one or plural image forming apparatuses. The management server receives a print order from a user, and upon receiving the print order, performs a print job using the print system under a print condition specified by the print order. Further, the management server generates a suggestion of a print condition in consideration of operation status of the print system and an amount of a consumable good required for the print job, differently from the print condition specified by the print order, and notifies the user of the suggestion.
There is provided an image processing apparatus which is provided with a communication interface, and a controller. When multiple print jobs are received via the communication interface, the controller is configured to analyze information included in each of the multiple print jobs, and handle the multiple print jobs as one print job when, as a result of analysis, it is determined that the information satisfies a particular condition.
When an editing APP receives a print instruction while designating an image to be printer, a supporting program receives a specific parameter and processes intermediate image data, and a general-use printing program generates print data based on the processed intermediate image data and transmits the print data to a printer. On the other hand, when the editing APP receives a preview instruction while designating an image to be printed, the supporting program receives a specific parameter and processes intermediated image data. Then, the general-use printing program responds to the editing APP without transmitting print data to the printer.
In a case where an inspection level to be used in determining quality of an image of an inspected surface of a printed sheet is set based on a comparison between a captured image resulting from imaging the inspected surface and a reference image, a plurality of inspection regions varying in inspection level is set for the reference image. In a case where an overlap region is present in the plurality of inspection regions, an inspection level of the overlap region is identified based on a predetermined priority. Further, the identified inspection level of the overlap region is displayed.
An information processing apparatus includes a reception unit configured to receive print data containing quality request data, a generation unit configured to generate a job based on the quality request data received by the reception unit, a transmission unit configured to transmit the job generated by the generation unit to a job processing apparatus, and another generation unit configured to generate product quality data indicating a quality of a product generated by processing the job by the job processing apparatus, wherein, in a case where the quality of the product does not satisfy a quality requested by the quality request data, the another generation unit generates the product quality data indicating that the quality requested by the quality request data is not satisfied.
The information processing apparatus includes an input device, a communication device, and a control device. The image indicated by the document is input to the input device. The communication device communicates with other electronic apparatuses. The control device includes a processor, and the processor functions as a controller by executing a control program. The controller detects a code indicating permission or prohibition of a job related to the document and a provider of the document from the input image, and determines the permission or prohibition of the job related to the document and the provider of the document on the basis of the detected code, and, in a case where it is determined that the job related to the document is permitted, executes the job related to the document, and notifies the provider that the job related to the document has been executed via the communication device.
Disclosed is a system that comprises a memory device and a processing device, operatively coupled with the memory device, to perform operations that include, identifying, by the processing device, a plurality of partitions located on a die of the memory device. The operations performed by the processing device further include selecting, based on evaluating a predefined criterion reflecting a physical layout of the die of the memory device, a first partition and a second partition of the plurality of partitions. The operations performed by the processing device further include generating a codeword comprising first data residing on the first partition and second data residing on the second partition.
A method of sending blocks of data from a client to be stored at a storage server, wherein for each block compression and encryption is performed at the client, and deduplication is performed at the server. Security is thus enhanced as the block is compressed and encrypted when it is sent over an unsecured network and when it is stored in potentially a third-party backup system. Provisions are made to enable addition of new compression algorithms and for retirement of old compression algorithms, while ensuring that a client would not receive a block which was compressed using an unsupported, e.g., retired, compression algorithm. In some examples a compression algorithm ID is tied to an encryption key version to enable refresh of blocks compressed with old algorithm.
An asynchronous power loss (APL) event is detected at a memory device. A last written page is identified in the memory device in response to detecting the APL event. A count of zeros programmed in the last written page is determined. The count of zeros is compared to a threshold constraint to determine whether to perform a dummy write operation on the last written page.
Methods, systems, and devices for compressed logical-to-physical mapping for a memory bypass for error detection and correction are described. A memory device may include error detection and correction circuitry for detecting and correcting errors in data that is read from a memory array of the memory device. To reduce read latencies, the memory device may include bypass circuitry that enables it to transmit the data to the host device before or during error detection. If the memory device determines that the data is erroneous, the memory device may transmit an alert to the host device concurrently with or after transmitting the data. The memory device may perform error correction on the data and store corrected data in a register. Based on receiving an alert, the host device may issue one or more additional read commands to re-read the data from the memory bank or read the corrected data from the register.
A method for a user interface for creating a preview content page is provided. Client identification, time period and campaign information are received via a user interface input field. An application programming interface is invoked to access a third party site's data content associated with the campaign information available during the time period. From the third party site, the data content associated with the campaign information available during the time period and metadata associated with the data content are received. The data content has advertisements. The advertisements are presented in the data content on the user interface's display window. A uniform resource locator (URL) link to the plurality of advertisements is generated, for allowing users to share the link on a public web site page. A computer readable storage medium and a user interface system are also provided.
A computer-implemented method for managing associations between production elements and production approaches includes displaying, within a breakdown panel, a representation of at least one scene obtained from a script, the representation including a plurality of production elements; displaying, within an approaches panel, a representation of at least some of the plurality of production elements displayed within the breakdown panel, and associated respective user selection indicators; and displaying, within the approaches panel, a representation of at least one production approach. The method further includes receiving a user selection of at least one production element displayed within the approaches panel; receiving a user selection of the at least one production approach. The selected at least one production element is associated with the selected at least one production approach.
A device displays a chart representing data from a dataset. The chart has a first region displaying labels corresponding to data values of a first data field, a second region displaying labels corresponding to data values of a second data field, and a third region displaying visual marks representing aggregated data corresponding to pairs of data values from the first and second data fields. In response to a user input, the device removes visual marks from the chart. When the input location is the first region, the device removes visual marks in the first chart corresponding to a first data value of the first data field. When the input location is the second region, the device removes visual marks corresponding to a second data value of the second data field. Otherwise, the device removes only one visual mark. This updates the displayed chart.
Embodiments of the present invention disclose a method and an apparatus for managing a notification bar message. The method according to the present invention includes: searching for a resident notification message; after the resident notification message is found, displaying, in a notification bar, prompt information prompting whether to delete the resident notification message; and if a user chooses to delete the resident notification message, deleting the resident notification message according to a system permission.
A method, apparatus and device for displaying a lyric, and a storage medium. The method includes: displaying a control panel and a lyric display panel of a target player application on an interface; canceling the display of the control panel when a trigger operation on the interface satisfies a reference condition, and setting the lyric display panel to be in a non-triggerable state, such that a desktop area of the current interface covered by the control panel and the lyric display panel becomes capable of receiving a trigger operation; displaying an interactive control on the interface, the interactive control being used to perform a lyric display control function; and restoring the display of the control panel when a click operation on the interactive control is detected.
To provide a highly browsable data processing device or a highly portable data processing device, a data processing device including the following is devised: an input/output unit provided with a display portion which can be folded and unfolded and a sensor portion that can sense the folded and unfolded states of the display portion and can supply data on fold, and an arithmetic unit that stores a program for executing different processing depending on the data on fold.
A touch control structure having a plurality of first mesh electrodes and a plurality of second mesh electrodes is provided. The touch control structure is limited in a touch control region and absent in a window region. A window-crossing row of the plurality of first mesh electrodes includes a first mesh block and a second mesh block respectively on a first side and a second side of the window region; a first conductive plate directly connected to multiple mesh lines of the first mesh block; a second conductive plate directly connected to multiple mesh lines of the second mesh block; and a first conductive bridge connecting the first conductive plate and the second conductive plate. The first conductive plate, the second conductive plate, and the first conductive bridge are respectively around a first portion, a second portion, and a third portion of a periphery of the window region.
A touch sensor includes a substrate with a first surface, and a plurality of first electrodes on the first surface of the substrate in a view area. The first surface of the substrate includes a plurality of bottomed grooves extending linearly. Each first electrode includes a plurality of fine lines including a conductive material buried in one of the grooves. Each fine line includes a bottomed recess recessed from the first surface toward the bottom surface of each groove.
A capacitive touch screen display operates by: receiving a plurality of sensed signals indicating variations in mutual capacitance associated with a plurality of cross points formed by a plurality of electrodes; generating capacitance image data associated with the plurality of cross points that includes positive capacitance variation data corresponding to positive variations of the capacitance image data from a nominal value and negative capacitance variation data corresponding to negative variations of the capacitance image data from the nominal value; determining, based on the positive capacitance variation data and the negative capacitance variation data, an upper threshold and a lower threshold; generating compensated capacitance image data, based on the upper threshold and the lower threshold, to compensate for noise in the capacitance image data; and processing the compensated capacitance image data to determine a proximal condition of the touch screen display.
The illustrative embodiments described herein provide systems and methods for notifying a user when a set of characters are identified in a media file. In one embodiment, a method includes receiving a set of characters inputted by the user of a computing device, playing the media file, transcribing the media file to form a transcription, and determining whether the transcription of the media file includes the set of characters. The method also includes initiating a notification prompt on a graphical user interface of the computing device in response to determining that the media file includes the set of characters.
A detection method of a three-dimensional touch module includes: step S1, providing an input signal to a transmitting electrode layer; step S2, outputting a first output signal and transmitting the first output signal to a control module by a two-dimensional inputting assembly, and outputting a second output signal and transmitting the second output signal to the control module by a pressure sensing assembly; and step S3, determining, by the control module, a touch position according to the first output signal and a pressure value according to the second output signal. A three-dimensional touch module includes: a cover plate; a two-dimensional inputting assembly disposed under the cover plate and configured to output a first output signal; a pressure sensing assembly disposed under the cover plate and configured to output a second output signal; and a transmitting electrode layer disposed between the two-dimensional inputting assembly and the pressure sensing assembly.
A display device including an input sensing unit. The input sensing unit includes sensors and signal lines connecting the sensors to a driving circuit for sensing a touch. The signal lines may include reception signal lines and transmission signal lines. A resistance value of the reception signal line connected to the sensor relatively far from the driving circuit is smaller than a resistance value of the reception signal line connected to the sensor relatively close to the driving circuit.
A novel input device that is highly convenient or reliable is provided. A novel input/output device that is highly convenient or reliable is provided. A semiconductor device is provided. The present inventors have reached an idea of a structure including a plurality of conductive films configured to be capacitively coupled to an approaching object, a driver circuit that selects a conductive film from a plurality of conductive films in a predetermined order, and a sensor circuit having a function of supplying a search signal and a sensing signal.
A stylus includes a first sensor configured to receive a first receive signal from a touch sensor of a device, and a second sensor configured to receive a second receive signal from the touch sensor of the device. The stylus includes an amplifier coupled to the first and second sensors and configured to produce a third signal by amplifying the difference between the first receive signal and the second receive signal. The stylus includes a controller configured to decode information encoded in the first receive signal and the second receive signal by processing the third signal.
Methods and systems for processing input from an image-capture device for gesture-recognition. The method further includes computationally interpreting user gestures in accordance with a first mode of operation; analyzing the path of movement of an object to determine an intent of a user to change modes of operation; and, upon determining an intent of the user to change modes of operation, subsequently interpreting user gestures in accordance with the second mode of operation.
A portable computer includes a display portion comprising a display and a base portion pivotally coupled to the display portion. The base portion may include a bottom case and a top case, formed from a dielectric material, coupled to the bottom case. The top case may include a top member defining a top surface of the base portion and a sidewall integrally formed with the top member and defining a side surface of the base portion. The portable computer may also include a sensing system including a first sensing system configured to determine a location of a touch input applied to the top surface of the base portion and a second sensing system configured to determine a force of the touch input.
Aspects of the present disclosure are directed to a multi-sensor don/doff detection system for an artificial reality device headset. The multi-sensor don/doff detection system can use a combination of a proximity sensor, an inertial measurement unit (IMU), and an eye tracking/face tracking (ET/FT) unit to make these determinations. However, when both the ET/FT system and proximity sensor system are active, they can have system coexistence issues. Thus, only one of these systems can be used simultaneously. The multi-sensor don/doff detection system can more accurately identify don events by using input from the proximity sensor and the IMU. The multi-sensor don/doff detection system can also more accurately identify doff events by using input from the IMU and either A) the proximity sensor when the ET/FT system is disabled or B) the ET/FT system when the ET/FT system is enabled.
Methods, systems, and apparatuses are described for providing XR experiences to multiple users. A plurality of XR devices might participate in a group XR experience. Physical environment data may be determined for each XR device. Virtual play areas for each of the XR devices may be determined. The different virtual play areas may be fit into different areas of a predefined virtual play area, and/or may be combined to form a combined virtual play area. Each XR device might be provided a different portion of the virtual play area. The XR devices may be sent different virtual map positioning data to provide the group XR experience.
The present disclosure includes apparatuses and methods for providing energy information to memory. An embodiment includes determining, by a host, that a charge level of an energy source coupled to the host has reached or exceeded a threshold value, and transmitting, from the host to a memory device coupled to the host, signaling indicative of an energy mode for the memory device, wherein the signaling is transmitted based at least in part on determining that the charge level of the energy source has reached or exceeded the threshold.
In described examples, a voltage regulator includes a processor. A register bank is coupled to the processor. A logic block is coupled to the processor and to the register bank. The logic block receives frames. The processor programs the logic block and the register bank based on at least one of the frames.
A hinge includes two rotatable axle units disposed on a base seat and each having two rotatable hinge shafts, two movable bracket units each including a base plate, two rotary blocks non-rotatably sleeved on the hinge shafts, and two movable plates movable relative to the rotary blocks, and two synchronizing units for making synchronous rotations of the hinge shafts. Each synchronizing unit includes a first gear member having two end surfaces in form of bevel gears, and two second gear members each meshing with the respective end surface and fitted to the respective rotary block. Rotations of the hinge shafts at one side of the base seat result in rotations of the rotary blocks and the second gear members, and bring in rotations of the second gear members, the rotary blocks and the hinge shafts at the other side to make the synchronous rotations.
An electronic device according to an embodiment includes a first housing, a second housing coupled to the first housing to slide in a first direction, and a display including a first area having one end coupled to one side of the first housing so as to be rotatable about an axis of rotation that faces in a second direction crossing the first direction and a second area adjacent to an opposite end of the first area. In a first state, the second housing is located in the first housing, one region of the second area of the display is folded toward a rear surface of the display, the display in a folded state is disposed on one surface of the first housing, and the first area of the display is visually exposed. In a second state, the display is unfolded such that the first area and the second area are visually exposed, and at least part of the second housing is withdrawn from the first housing and disposed on a rear surface of the second area of the display.
The description relates to hinged devices, such as hinged computing devices. One example can include a first portion and a second portion that are rotatably secured relative to a hinge axis through a range of rotation from a closed orientation to an open orientation. The example can also include an oblong friction shaft and a friction band secured to the first portion and defining an oblong aperture configured to receive the oblong friction shaft. At the closed orientation a major axis of the oblong friction shaft is aligned with a major axis of the oblong aperture to provide a relatively low resistance to rotation and at the open orientation the major axis of the oblong friction shaft is rotated relative to the major axis of the oblong aperture to provide a relatively high resistance to rotation.
A computing device may perform a method that includes determining whether internal time reference data is available while booting the computing device. When the internal time reference data is unavailable, the device clock is set to a default time setting. However, when the internal time reference data is available while booting the computing device, the method includes searching the internal time reference data for a most recent time reference, and setting the device clock to a current time setting based on the most recent time reference.
A controllable temperature coefficient bias (CTCB) circuit is disclosed. The CTCB circuit can provide a bias to an amplifier. The CTCB circuit includes a variable with temperature (VWT) circuit having a reference circuit and a control circuit. The control circuit has a control output, a first current control element and a second current control element. Each current control element has a “controllable” resistance. One of the two current control elements may have a relatively high temperature coefficient and another a relatively low temperature coefficient. A controllable resistance of one of the current control elements increases when the controllable resistance of the other current control element decreases. However, the “total resistance” of the current control circuit remains constant with a constant temperature. The VWT circuit has an output with a temperature coefficient that is determined by the relative amount of current that flows through each current control element of the control circuit. A Current Digital to Analog Converter (IDAC) scales the output of the VWT and provides the scaled output to an amplifier bias input.
A power regulation system including a reference generator, a temperature compensation circuit coupled to the reference generator, and a low-dropout (LDO) regulator circuit coupled to the temperature compensation circuit, wherein the temperature compensation circuit provides a reference voltage to the LDO regulator circuit at least based on a ratio of a first current and a second current.
A voltage regulation system includes a voltage regulator configured to receive a first reference voltage and output a regulated voltage; a bias voltage generator comprising a diode-connect transistor configured to receive a bias current and output a reference gate voltage; and a plurality of switch-load circuits, each of said plurality of switch-load circuits comprising a common-drain transistor configured to receive power from the regulated voltage and control from the reference gate voltage via a switch controlled by a logical signal and output a supply voltage to load with a decoupling capacitor, wherein a size of the common-drain transistor is scaled from a size of the diode-connect transistor in accordance with a ratio between a current of the load and the bias current.
A method of controlling an actuator system including a plurality of k actuators. Each of the actuators-receives a control input ui, wherein index i denotes a particular actuator, which control input ui is determined depending on a weight matrix W including a weighting factor wi for each actuator and depending on at least a physical maximum control limit uimax for each of the actuators. The weighting factors wi and/or physical maximum control limit uimax are actively changed during operation if a first comparison of the control input ui or a function f(ui) thereof with a set first threshold value yields that the control input ui or function f(ui) thereof exceeds the set first threshold value. The first comparison is repeated during operation, and a new control input ui is determined from the adjusted weighting factor wi and/or the adjusted physical maximum control limit uimax and applied to the actuators.
A dynamic obstacle avoidance method based on real-time local grid map construction includes: acquiring and inputting Red-Green-Blue-RGBD image data of a real indoor scene into a trained obstacle detection and semantic segmentation network to extract obstacles of different types and semantic segmentation results in the real indoor scene and generate 3D point cloud data with semantic information; according to the 3D point cloud data, extracting and inputting state information of a dynamic obstacle to a trained dynamic obstacle trajectory prediction model, and predicting a dynamic obstacle trajectory in the real indoor scene to build a local grid map; and based on a dynamic obstacle avoidance model, sending a speed instruction in real time to the mobile robot to avoid various obstacles during the navigation process.
Systems and methods are described herein for real-time data processing and for emergency planning. Scenario test data may be collected in real-time based on monitoring local or regional data to ascertain any anomaly phenomenon that may indicate an imminent danger or of concern. A computer-implemented method may include filtering a plurality of different test scenarios to identify a sub-set of test scenarios from the plurality of different test scenarios that may have similar behavior characteristics. A sub-set of test scenarios is provided to a trained neural network to identify one or more sub-set of test scenarios. The one or more identified sub-set of test scenarios may correspond to one or more anomaly test scenarios from the sub-set of test scenarios that is most likely to lead to an undesirable outcome. The neural network may be one of: a conventional neural network and a modular neural network.
A method and system for assigning slot addresses to modules in a fault tolerant industrial control system includes a pair of backplane switches on each base. Each backplane switch is configured to communicate between one backplane and the modules located on the base and to communicate between backplane switches located at adjacent bases. A backplane switch on a bank master base first assigns a base address and slot addresses to itself. The backplane switches on each additional base initiate transmission of a base address request. A base address response, including a base address and slot numbers for the adjacent base, is transmitted after a base has its own address assigned. Each base repeats the process in sequence along the bank, incrementing the base address by one and the slot address by the number of slots on the base and passing the new base and slot addresses along the bank.
A numerical control device is intended for a machine tool that machines a workpiece using a multi-edge tool including a plurality of edges of different specifications, the numerical control device including: a tool information memory that stores edge type numbers in association with tool type numbers; a tool type-edge type selection command decoding unit that prefetches a plurality of blocks of a machining program, decodes a tool type selection command for selecting one of the tool types and/or an edge type selection command for selecting one of the edge types in the plurality of prefetched blocks, and generates internal information including the tool type selection command and/or the edge type selection command that have been decoded; and a tool selection unit that selects one tool with which the number of times of tool replacement is minimized during execution of at least the plurality of prefetched blocks.
A SCADA web HMI system dynamically distributes server connection priority lists from web HMI servers to HMI clients in accordance with order of assignment which takes load balancing into account. As a result, preliminary settings associated with connection priority do not need to be made on the HMI clients. Also, since the server connection priority lists are assigned to the HMI clients in accordance with the order of assignment which takes load balancing into account, the numbers of clients connected to the individual web HMI servers are equalized and the load balancing can be ensured. The SCADA web HMI system can reduce the operating costs necessary in client settings while ensuring redundancy and load balancing of servers.
An optimum combination of a loop unrolling number and a circuit parallel number in a high-level synthesis is determined. A circuit synthesis information generation unit sets, as parameter candidates, a plurality of combinations of a loop unrolling number and a circuit parallel number to generate circuit synthesis information indicating a synthesis circuit obtained by high-level synthesis processing for each of the combinations. An optimum parameter determination unit calculates, for each piece of the generated circuit synthesis information, an estimation processing performance related to the synthesis circuit indicated by the circuit synthesis information, and determines an optimum combination of the loop unrolling number and the circuit parallel number based on the circuit synthesis information based on which a maximum estimation processing performance is obtained.
A system comprising a processor, a non-transitory memory, and an application stored in the non-transitory memory is provided. The application is configured, upon execution by the processor, to cause the processor to generate a first controller signal based on a first set of feedback from an electric motor, based on a characterization tone, and based on a controller gain, to provide the first controller signal for operation of the electric motor, to generate a frequency response analysis on a second set of feedback from the electric motor in response to the first controller signal, and to determine a new value of the controller gain based on the frequency response analysis.
Systems and methods provide for the determination and correction of tooling deviation by comparing two different three-dimensional surface scans of a composite panel after curing. Such methods and systems may allow for less accurate post-cure fixturing (e.g., holding the panel in a less constrained state, as compared to prior art techniques), while still maintaining a sufficient amount of precision for predictive shimming and shimless techniques. Methods include performing a first three-dimensional surface scan, performing a second three-dimensional surface scan, and comparing the two to determine a deformation function corresponding to tooling deviation. In some systems, a header structure is used to hold the composite panel in a nominal configuration for the second three-dimensional surface scan. In some systems, scanning devices perform mirrored scanning on either side of the composite panel, using a common reference frame.
A control system for controlling operation of a plurality of building control devices includes a pool of virtual controllers that are hosted on one or more computing device and are configured to provide control commands for controlling one or more associate building control devices of the plurality of building control devices. Each of a plurality of edge controllers are associated with at least one building control device and are configured to receive and execute control commands from one or more of the virtual controllers to control the associated one or more building control devices. An orchestrator is configured to monitor one or more operational characteristics of each of the virtual controllers and to modify one or more aspects of the pool of virtual controllers when one or more of the operational characteristics of one or more of the virtual controllers meets predetermined characteristics.
A device for measuring a horological component comprising a measurement cell, at least two optical systems and a driver unit. The measurement cell comprises a measurement channel filled with a liquid and flat and parallel faces. Each optical system comprises a light emitter suitable for emitting a light in a predefined wavelength so as to illuminate a horological component that is present and being displaced in the measurement channel in the measurement zone and an optical sensor associated with said light emitter to receive at least a part of the light emitted by said light emitter. The optical systems operate in different respective wavelengths. The driver unit drives the optical systems and processes the digital data obtained from the optical systems. It is configured to implement calculations of at least one measurement of a horological component.
An input mechanism, such as a crown, detects amounts of applied force. In various examples, an assembly including an input mechanism has an enclosure; a stem coupled to the enclosure such that the stem is rotatable, translatable, and transversely moveable with respect to the enclosure; a sensor, coupled between the stem and the housing, to which force is transferred when the stem moves with respect to the housing; and a processing unit coupled to the sensor. The processing unit is operable to determine a measurement of the force, based on a signal from the sensor.
A process cartridge includes a frame, a photosensitive drum supported by the frame, and a developing roller supported by the frame. A coupling is operatively connected to the photosensitive drum, with the coupling being rotatable about an axis thereof, and with the coupling being positioned (i) at a first end of the photosensitive drum, (ii) coaxial with the photosensitive drum, and (iii) at a side of the process cartridge. A helical gear is positioned at the side of the process cartridge, the helical gear being rotatable about an axis thereof, the helical gear having a plurality of teeth, with at least some of the teeth being exposed teeth that are uncovered by the frame and exposed to outside of the process cartridge. As measured in an axial direction of the photosensitive drum, at least a part of the exposed teeth of the helical gear is positioned farther from the second end of the photosensitive drum than a tip of a projection of the coupling is positioned from the second end of the photosensitive drum.
A heat roller includes a main body and a follower gear. The main body includes a cutaway portion and a pair of protruding plate portions. The follower gear includes a transmission protrusion and an abutment portion. The transmission protrusion is abutted against one protruding plate portion, when the follower gear rotates. The abutment portion is abutted against the one protruding plate portion, when the main body rotates in advance. A size of the transmission protrusion along the width direction of the cutaway portion is smaller than a clearance between the pair of protruding plate portions in the width direction, and a clearance between the abutment portion and the one protruding plate portion in the roller rotation direction is narrower than a clearance between the transmission protrusion and the other protruding plate portion in the roller rotation direction, when the transmission protrusion is in contact with the one protruding plate portion.
A first replaceable unit is provided for use with a second replaceable unit in an electrophotographic image forming device. The first replaceable unit includes a latch movable between a latching position for latching the first replaceable unit to the second replaceable unit and an unlatching position for permitting the first replaceable unit to separate from the second replaceable unit. The latch is positioned to contact a latch catch on the second replaceable unit in order to prevent the first replaceable unit from separating from the second replaceable unit when the first replaceable unit is mated with the second replaceable unit and the latch is in the latching position. The latch includes a cam follower surface for contacting a camming surface on the second replaceable unit during mating of the first replaceable unit with the second replaceable unit to cause the latch to move toward the latching or unlatching position.
An image forming apparatus according to the present invention includes an optical box, a housing having a discharge opening, a cover provided downstream of the optical box in a discharge direction in which a recording material is discharged through the discharge opening and forming a part of the housing, and a circuit board, wherein the circuit board includes a plurality of electronic components and a wiring board configured to electrically connect the plurality of electronic components, the circuit board is disposed in such a direction that a surface of the wiring board on which the plurality of electronic components is mounted intersects the discharge direction, and the wiring board is provided between the cover and the optical box in the discharge direction, and wherein, when viewed in a vertical direction, the optical box and the plurality of electronic components partially overlap each other.
An image forming apparatus includes a fixing belt, a steering roller, a pressure rotation member, and a control unit. The pressure rotation member forms a nip portion with the fixing belt to convey a recording material. In continuously performing fixing on recording materials, the control unit controls the steering roller such that a distance between a center position of the fixing belt when an operation to tilt the steering roller is performed for a first time after the center position is moved away from a center position of a moving range of the fixing belt and the center position of the moving range is smaller in a period after a last but one recording material before the pressure rotation member enters a separated state from the fixing belt passes through the nip portion than in a period before the recording material passes through the nip portion.
A method includes: storing a carrier containing material in a storage; recording environmental data of the storage to a database while the material is in the storage; generating a forecast for the material in the carrier based on the environmental data; receiving a request for the material from a semiconductor fabrication tool; and providing the carrier to the semiconductor fabrication tool based on the forecast.
A resist underlayer film for lithography does not cause intermixing with a resist layer, has high dry etching resistance and high heat resistance, and generates a low amount of sublimate. A resist underlayer film-forming composition containing a polymer having a unit structure of the following formula (1):
wherein A is a divalent group having at least two amino groups, the group is derived from a compound having a condensed ring structure and an aromatic group for substituting a hydrogen atom on the condensed ring, and B1 and B2 are each independently a hydrogen atom, an alkyl group, a benzene ring group, a condensed ring group, or a combination thereof, or B1 and B2 optionally form a ring with a carbon atom bonded to B1 and B2.
A resist composition comprising a base polymer and a salt is provided. The salt consisting of an anion derived from a carboxylic acid having an iodized or brominated hydrocarbyl group and a cation derived from a 2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane, biguanide or phosphazene compound. The resist composition exerts a high sensitizing effect and an acid diffusion suppressing effect, causes no film thickness loss after development, and is improved in resolution, LWR and CDU when a pattern is formed therefrom by lithography.
A chemically amplified resist composition comprising a quencher containing an ammonium salt of an iodized or brominated phenol and an acid generator exerts a sensitizing effect and an acid diffusion suppressing effect and forms a pattern having satisfactory resolution, LWR and CDU.
Aspects described herein relate to mask synthesis using design guided offsets. A target shape on an image surface to be fabricated using a mask based on a design of an integrated circuit is obtained. Rays are generated emanating from respective anchor points. The anchor points are on a boundary of the target shape or a boundary of a mask shape of the mask. For each ray of the rays, a distance is defined between a first intersection of the respective ray and the boundary of the target shape and a second intersection of the respective ray and the boundary of the mask shape. An analysis is performed by one or more processors, where the analysis is configured to modify the distances based on an error between the target shape and a resulting shape simulated to be on the image surface resulting from the mask shape.
The phase shift film has a function to transmit an exposure light of a KrF excimer laser at a transmittance of 2% or more, and a function to generate a phase difference of 150 degrees or more and 210 degrees or less between the exposure light transmitted through the phase shift film and the exposure light transmitted through the air for a same distance as a thickness of the phase shift film, in which the phase shift film has a structure where a lower layer and an upper layer are stacked in order from a side of the transparent substrate, in which a refractive index nL of the lower layer at a wavelength of the exposure light and a refractive index nU of the upper layer at a wavelength of the exposure light satisfy a relation of nL>nU, in which an extinction coefficient kL of the lower layer at a wavelength of the exposure light and an extinction coefficient kU of the upper layer at a wavelength of the exposure light satisfy a relation of kL>kU; and in which a thickness dL of the lower layer and a thickness dU of the upper layer satisfy a relation of dL
A projector according to an aspect of the present disclosure includes an optical path changer that is provided between an image formation unit and an projection optical unit and changes the optical path of image light from the image formation unit, a linkage frame that links the image formation unit and the projection optical unit to each other, and a vibration absorbing member that absorbs vibration generated by the optical path changer. The optical path changer includes a base member, an optical member, and a swing frame that supports the optical member and is swingably supported relative to the base member. The vibration absorbing member has vibration absorbing surfaces that are in contact with the base member of the optical path changer, and the vibration absorbing surfaces are in contact with support surfaces of the linkage frame to cause the support surfaces to support the optical path changer.
A camera support includes a post, a gimbal assembly, and a mounting member. The mounting member couples the gimbal assembly to the post for rotation of the gimbal assembly about a pan axis coincident with a longitudinal axis of symmetry of the post. The gimbal assembly includes a roll cradle, a tilt body and a second mounting member. The roll cradle is movably secured to the first mounting member for rotation about a roll axis perpendicular to the pan axis. The tilt body is movably mounted to the roll cradle for rotation about a tilt axis perpendicular to both the pan axis and the roll axis. The second mounting member is connected to the tilt body for attaching a camera to the tilt body.
The invention relates to a camera (4) for a motor vehicle (1), with an outer housing (9) and with a heat dissipating device (18) for dissipating heat from the camera (4), wherein the heat dissipating device (18) comprises a duct (19) for conveying a liquid or gaseous heat absorption medium, wherein the duct (19) is arranged at the outer housing (9). The invention also relates to a device (32) and a motor vehicle (1).
An optical element driving mechanism includes an optical element, a fixed assembly, a movable assembly, and a driving assembly. The optical element has an optical axis. The movable assembly is movably with respect to the fixed assembly and configured to hold the optical element. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. When viewed along the optical axis, the optical element driving mechanism with a rectangular structure has a long side and a short side, and a length of the long side is not equal to a length of the short side.
An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, a driving assembly, and a support assembly. The movable portion is used for connecting to an optical element. The movable portion may move relative to the fixed portion. The driving assembly is used for driving the movable portion to move relative to the fixed portion. The movable portion is movable relative to the fixed portion through the support assembly.
An optical panel includes a first transparent substrate, a second transparent substrate, an electrochromic assembly, a first transparent electrode layer, and a second transparent electrode layer. The second transparent substrate is arranged opposite the first transparent substrate. The electrochromic assembly is located between the first transparent substrate and the second transparent substrate and includes a plurality of electrochromic pixel-units that are arranged in an array. A shielding and spacing wall is arranged between two adjacent of the plurality of electrochromic pixel-units. The first transparent electrode layer is arranged between the electrochromic assembly and the first transparent substrate. The second transparent electrode layer is arranged between the electrochromic assembly and the second transparent substrate. The first transparent electrode layer and the second transparent electrode layer are configured to provide a driving voltage to the plurality of electrochromic pixel-units to adjust an optical parameter of the plurality of electrochromic pixel-units.
A transistor substrate is provided. The transistor substrate includes a plurality of data lines and a plurality of scan lines. The scan lines intersect with the data lines to define a plurality of pixel units. One of the pixel units includes a first electrode, a second electrode and a switching transistor. The first electrode has a slit including a major axis portion and a curved portion connected to the major axis portion. One of the first electrode and the second electrode is used for receiving a pixel voltage signal, and the other is used for receiving a common voltage signal. The switching transistor includes a switching electrode. The switching electrode and the curved portion of the slit have an overlapping region, and an area of the overlapping region is 0.2 times to 0.8 times an area of the curved portion.
According to one embodiment, a display device including an insulating substrate, a first gate driver, a first gate line and a conductive material layer is provided. The first gate line has a first end connected to the first gate driver and a second end opposite to the first end, and extends in a first direction. The conductive material layer is located between the insulating substrate and the first gate line, overlaps the first gate line, and extends in the first direction. In the display device, the second end of the first gate line is electrically connected to the conductive material layer.
An optical device is provided in the present application. The present application provides an optical device that may prevent defects such as short circuits even when an external power source has been connected in an encapsulated structure.
A display device including a substrate; a sealing member surrounding a part of a transmission area of the substrate; a plurality of pixels in a display area of the substrate; an encapsulation substrate facing the substrate with the sealing member between the encapsulation substrate and the substrate; a transparent material layer between the substrate and the encapsulation substrate and corresponding to the transmission area; and a light-shielding portion on the encapsulation substrate and corresponding to the sealing member. A width of the light-shielding portion is greater than a width of the sealing member.
The display device includes a liquid crystal panel including a polymer dispersed liquid crystal (PDLC) layer and a light source, the PDLC layer containing a polymer network and liquid crystal components dispersed in the polymer network, the light source being apart from the liquid crystal panel with an air layer, and configured to emit light toward the liquid crystal panel from an oblique direction, the end portion and the central portion of the PDLC layer each having, in the scattering state, an angle dependence which changes a transmittance of light to be emitted from a front surface based on an angle at which light is incident on a back surface of the PDLC layer, with the angle dependence of the end portion being different from the angle dependence of the central portion, the light source irradiating the end portion and the central portion with light at different angles.
A display device capable of suppressing light leakage is provided. The display device includes a panel, a transparent region provided in a display region of the panel, a frame region provided between the transparent region and the display region, a backlight unit, and a bezel. In the frame region, the panel, the backlight unit, and the bezel are adhered by a tape, and the bezel and the tape have a function of blocking visible light.
An optical device includes: a ground electrode having a ground potential; a thin film optical waveguide formed by a thin film substrate stacked on the ground electrode; a signal electrode that is arranged at a position facing the ground electrode across the thin film optical waveguide and that transmits a high frequency signal; and a dielectric that covers at least a part of an exposed surface of the signal electrode.
An apparatus having a segmented optical modulator includes an optical waveguide having three or more segments. Each of three or more optical modulators includes a corresponding waveguide segment and is configured to apply an optical modulation that is proportional to the length of the segment. Three or more electrical contacts receive respective bit values of binary values. Each binary value includes at least three bit values including a least significant bit (LSB) bit value, a most significant bit (MSB) bit value, and at least one intermediate bit (IB) bit value between the LSB bit value and the MSB bit value. At least one waveguide segment of a corresponding optical modulator receiving an LSB bit value is positioned between a first waveguide segment of a corresponding optical modulator receiving an MSB bit value and a second waveguide segment of a corresponding optical modulator receiving an IB bit value.
Disclosed is a device that utilizes a light-field display to project a virtual continuum of real world perspectives of a natural scene to a plurality of observer viewpoints to simulate a natural environment. An observer perceives different perspectives as he or she moves through the simulated environment just like the observer would as if he or she were in a natural environment.
A method for collimating light using a film including elongated chambers of bistable electrophoretic fluids. The light-collimating films are suitable to control the amount and/or direction of light incident to a transmissive substrate. Such films may be integrated into devices, such as LCD displays, to provide a zone of privacy for a user viewing the LCD display. Because the light-collimating film is switchable, it allows a user to alter the collimation of the emitted light on demand. Because the films are bistable, they do not require additional power after they have been switched to a display state.
An apparatus includes a laser system that includes a first fiber having an output end and situated to propagate a first laser beam with a first beam parameter product (bpp) and a second fiber having an input end spliced to the output end of the first fiber at a fiber splice so as to receive the first laser beam and to form a second laser beam having a second bpp that is greater than the first bpp, wherein the output end of the first fiber and the input end of the second fiber are spliced at a tilt angle so as to increase the first bpp to the second bpp.
An optical component includes a block of a transparent material, having a trapezoidal cross-section defined by first and second parallel, rectangular faces on mutually-opposing sides of the block and third and fourth faces oriented diagonally at opposing ends of the first and second faces. One or more planar, partially-reflecting layers extend within the block between the third and fourth faces in an orientation parallel to the first and second faces.
A head-mounted display (HMD) system may include a body having a right side and a left side, a display device coupled to the body and positioned to display content to a user when the HMD system is donned by the user, a right side arm coupled to the right side of the body and dimensioned such that, when coupled to a first portion of a swappable strap, the right side arm and the first portion of the strap form a first fastener, and a left side arm coupled to the left side of the body and dimensioned such that, when coupled to a second portion of the strap, the left side arm and the second portion of the strap form a second fastener. The first fastener and the second fastener may detachably secure the strap to the body of the HMD system. Various other methods and systems are also disclosed.
A display assembly monitors movements in a waveguide assembly and corrects for aberrations in image light caused by the monitored movements. For example, an artificial reality headset may include a display assembly that monitors for changes in shape or displacement of waveguide assemblies that generate three dimensional images for display with a real world environment. The display assembly includes movement sensors (e.g., piezoelectric movement sensors) coupled to the waveguide assembly. The movement sensors monitor the movement of the waveguide assembly and provide the monitored movement to a display controller that generates instructions for correcting aberrations in the image light.
A head-mounted display device including a projection device and an optical waveguide is provided. The projection device has an optical pupil located on a second surface of the optical waveguide, and includes a light source, a first MEMS mirror element, a second MEMS mirror element, and a relay optical element group. The relay optical element group has a first axis equivalent focal length corresponding to a first parallel light beam and has a second axis equivalent focal length corresponding to a second parallel light beam. The first parallel light beam and the second parallel light beam travel along an optical axis of the relay optical element group, and a value of the first axis equivalent focal length is different from a value of the second axis equivalent focal length. The head-mounted display device may provide good image quality and a large field of view.
In one embodiment, a method includes, by one or more computing devices, determining, based on first tracking data, a first viewpoint of the user and a first hand pose of the user. The method may include generating a virtual object in a virtual environment based on the first hand pose and a predetermined spatial relationship between the virtual object and the hand of the user. The method may include rendering a first image of the virtual object as viewed from the first viewpoint. The method may include determining, based on second tracking data, a second viewpoint of the user and a second hand pose. The method may include adjusting the first image of the virtual object based on changes from the first hand pose to the second hand pose. The method may include rendering and displaying a second image from the adjusted first image viewed from the second viewpoint.
Some embodiments of a mirror tilt actuator include a chassis, one or more magnetic yoke structures affixed to the chassis, and a carriage moveably mounted to the chassis. In some embodiments, the chassis includes an indentation for affixing one or more magnetic yoke structures, and the chassis further includes one or more bearing receivers for mounting a mirror carriage. In some embodiments, the carriage includes one or more bearing members. In some embodiments, the one or more bearing members rest in one or more respective bearing receivers of the chassis. In some embodiments, the one or more edge members terminate in one or more curved leading edge faces. Some embodiments further include a magnet fixedly mounted to the carriage, a magnetic coil wrapped around a coil shaft mounted to the chassis.
A single plane illumination microscope having an illumination optical system for illuminating a sample located on a sample carrier in a medium, and which is parallel to a planar reference surface. The sample is illuminated by a light sheet via an illumination light path. A detection optical system has a detection beam path. The optical axes of the illumination and detection optical systems each define an angle that is not equal to zero degrees along with the normal to the reference surface. A barrier layer system includes at least one layer of a given material having a given thickness and separates the medium from the illumination and detection optical systems. A base area of the barrier layer system is in contact with the region that is accessible for illumination and detection activities, said base area running parallel to the reference surface. At least one corrective element in the illumination beam path and/or the detection beam path allows those aberrations to be reduced which are created when light to be detected or light for illuminating the sample penetrates interfaces of the barrier layer system at an angle. The microscope has means, which are independent of the generation of the light sheet, for applying, via at least one manipulation beam path, light intensity to the sample in substantially point-shaped regions of the light sheet plane or in a given volume that at least temporarily encompasses the light sheet plane.
An optical image capturing system includes, along the optical axis in order from an object side to an image side, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens. At least one lens among the first to the sixth lenses has positive refractive power. The seventh lens has negative refractive power, wherein both surfaces thereof are aspheric, and at least one surface thereof has an inflection point. The lenses in the optical image capturing system which have refractive power include the first to the seventh lenses. The optical image capturing system can increase aperture value and improve the imaging quality for use in compact cameras.
An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, a driving assembly, and at least three damping materials. The movable portion is configured to connect an optical member that has an optical axis. The movable portion is movable relative to the fixed portion. The driving assembly drives the movable portion to move relative to the fixed portion. The damping materials are located on an imaginary plane, and the imaginary plane is parallel to the optical axis.
A fiber optic assembly is provided including a body defining a fiber routing volume, a plurality of fiber optic components disposed in a front side of the body, and a plurality of optical filters disposed within the volume. The plurality of optical filters enable at least twenty four (24) dense wavelength division multiplexing (DWDM) channels.
A compartmentalized enclosure for controlling access to different components in a telecommunications system including a lower housing member shaped to define an outer perimeter portion and a cavity, a panel member configured to move between a closed panel position, where the panel member prevents access to equipment within the cavity, and an open panel position, where the panel member permits access to the cavity, wherein the panel member is disposed in the cavity of the lower housing member, and is shaped to define a inner perimeter portion that is configured to substantially match and fit within the outer perimeter portion of the lower housing member so as to form a substantially perimeter matching portion that prevents access to equipment within the cavity between the inner perimeter portion and the outer perimeter portion when the panel member is in the closed position.
A new boot for a fiber optic connector has a ribbed back portion, a center portion, and a forward extending portion that can be used to insert and remove the fiber optic connector to receptacle. The ribbed back portion has grasping elements and is connected to the center portion. The center portion is removably connected to a crimp body that is in turn connected to the connector housing. The front extension is connected to the fiber optic connector and also provides a keying feature depending on the side of the fiber optic connector on which it is installed.
A connector is disclosed that includes a housing and first and second attachment areas located in the housing and spaced apart from each other along the mating direction of the connector. The second, but not the first, attachment area is designed to move relative to the housing. The connector further includes an optical waveguide that is permanently attached to, and under a first bending force between, the first and second attachment areas. The connector also includes a light coupling unit located in the housing for receiving light from the optical waveguide and transmitting the received light to a mating connector along a direction different than the mating direction of the connector. The mating of the connector to the mating connector causes the optical waveguide to be under a greater second bending force between the first and second attachment areas.
Luminaires are described herein employing waveguides and associated architectures for dynamic alteration of illuminance distribution patterns. The waveguide includes a light extraction component. The waveguide transmits light from a light source to the light extraction component by total internal reflection (TIR). The light extraction component includes one or more reversibly moveable surfaces for altering illuminance distribution patterns of the luminaire in response to one or more forces applied to the light extraction component by a force application assembly of the luminaire.
A Photonic Crystal Fiber (PCF) a method of its production and a supercontinuum light source comprising such PCF. The PCF has a longitudinal axis and includes a core extending along the length of said longitudinal axis and a cladding region surrounding the core. At least the cladding region includes a plurality of microstructures in the form of inclusions extending along the longitudinal axis of the PCF in at least a microstructured length section. In at least a degradation resistant length section of the microstructured length section the PCF includes hydrogen and/or deuterium. In at least the degradation resistant length section the PCF further includes a main coating surrounding the cladding region, which main coating is hermetic for the hydrogen and/or deuterium at a temperature below Th, wherein Th is at least about 50° C., preferably 50° C.
A light source module including a light guide plate, a first light source and a plurality of first optical microstructures is provided. The light guide plate has a first incident surface and a bottom surface connected to the first incident surface. The first light source is disposed on a side of the first incident surface of the light guide plate. The first optical microstructures are disposed on the bottom surface. Each of the first optical microstructures has a first light receiving surface disposed toward the first light source. Each of the first light receiving surfaces of a first portion of the first optical microstructures has a first edge at a junction with the bottom surface, and a perpendicular bisector of the first edge passes through the first light source.
An electronic device may include conductive structures having a visible-light-reflecting coating. The coating may include a seed layer, transition layers, a neutral-color base layer, and an uppermost layer that forms a single-layer interference film. The neutral-color base layer may be opaque to visible light. The interference film may include silicon and may have an absorption coefficient between 0 and 1. The interference film may include, for example, CrSiCN or CrSiC. The composition of the interference film, the thickness of the interference film, and/or the composition of the base layer may be selected to provide the coating with a desired color in the visible spectrum (e.g., at blue or purple wavelengths). The color may be relatively stable even if the thickness of the coating varies across its area.
Methods for predicting hydrocarbon production rates for a hydrocarbon reservoir include receiving data from a hydrocarbon reservoir. The data includes reservoir characterization data, well log data, and hydraulic fracturing data. A physics-constrained machine learning model predicts a hydrocarbon production rate for the hydrocarbon reservoir as a function of time. The physics-constrained machine learning model includes an artificial neural network and a hydrocarbon fluid flow model. Predicting the hydrocarbon production rate includes generating, by the artificial neural network, multiple parameters of the hydrocarbon fluid flow model based on the data from the hydrocarbon reservoir. The hydrocarbon fluid flow model provides the predicted hydrocarbon production rate as a function of time based on the parameters. A display device of the computer system presents the predicted hydrocarbon production rate for the hydrocarbon reservoir as a function of time.
A method may include obtaining, by a computer processor, seismic data regarding a geological region of interest. The method may further include obtaining, by the computer processor, well log data from a wellbore within the geological region of interest. The method may further include determining, by the computer processor, a formation top depth using the seismic data, the well log data, a stratigraphic column, and a machine-learning model. The stratigraphic column may describe an order of various formations within the geological region of interest. The machine-learning model may assign a feature among the seismic data and the well log data to a formation among the formations in the stratigraphic column to determine the formation top depth.
An apparatus for detecting a presence of an object includes an inductive sensing coil that is configurable to generate a magnetic field. The inductive sensing coil is configured to have an electrical characteristic that is detectable when generating the magnetic field. The apparatus comprises a controller configured to detect a change in the electrical characteristic and determine a presence of the object based on the detected change in the electrical characteristic.
A timing alignment method for data acquired by monitoring units of a borehole-surface micro-seismic monitoring system includes acquiring two rock-burst waveform data segments with GPS timestamps; calculating a time difference and a number of sampling points between each pair of adjacent GPS timestamps; adding, on an equal-interval basis, a sampling time to a sampling point missing a timestamp between each pair of adjacent GPS timestamps; calculating average sampling frequencies of the two rock-burst waveform data segments, adding, on an equal-interval basis, a sampling time to a sampling point missing a timestamp except first and last GPS timestamps in each of the two data segments; obtaining sampling times of all sampling points, resampling the sampling times according to a uniform sampling frequency; calculating a rock-burst waveform data segment at a new sampling time with a linear interpolation formula, and aligning the sampling times of the two rock-burst waveform data segments.
The invention relates to a detecting unit for detecting ionizing radiation. The device comprises a converter unit for the amplification of ionizing radiation and a read-out unit, wherein the converter unit comprises a converter and a gas-electron multiplier, wherein said converter comprises a substrate with an ionizing radiation-receiving major surface and an electron-emitting major surface and a stack of accelerator plates in contact with the electron-emitting major side, wherein said stack comprises a plurality of perforated accelerator plates wherein the perforations of the perforated accelerator plates are aligned to form a matrix of blind holes.
An anti-spoofing satellite navigation and positioning method includes: receiving a positioning satellite radio frequency (RF) signal by a satellite RF receiving module, and detecting whether a power strength of the received signal exceeds a preset threshold; preprocessing the received signal by a satellite RF signal identification module, and intercepting an identifiable positioning satellite signal for identification to distinguish a real signal and a false signal; calculating the received signal to acquire real position and time information when the received signal is identified as the real signal; and sending an alarm message when the received signal is identified as the false signal. An anti-spoofing satellite navigation and positioning chip is further provided. By identifying whether the signal is a real signal or a false signal, the authenticity of the upper-layer position calculation is ensured, and the purpose of timely and accurate detection and effective resistance to spoofing attacks is achieved.
A system for testing a global navigation satellite system (GNSS) receiver includes signal generators, antennas coupled to respective signal generators and having overlapping antenna radiation patterns, and processing circuitry. The signal generators generate respective test signals. Each of the test signals is a combination of multiple GNSS navigational signals which are generated using a set of ranging codes. The processing circuitry selects respective sets of ranging codes for the signal generators, such that the sets of ranging codes are separately insufficient to lock a GNSS receiver and are jointly sufficient to lock a GNSS receiver.
A method for monitoring the airspace around an aircraft or the road, runway, taxiway, movement area condition or any other object or surface of interest ahead of a vehicle, even in inclement weather is disclosed. The present teachings provide a system for characterizing cloud drops, cloud ice particles, other hydrometeors such drizzle, rain or falling snow, and for distinguishing dry surfaces from those covered by water, snow, frost, and various types of ice even when they cover only a fraction of the field of view of the road condition monitoring system, even in inclement weather.
In one general aspect, an apparatus can include a first laser subsystem configured to transmit a first laser beam at a first location on an object at a time and a second laser subsystem configured to transmit a second laser beam at a second location on the object at the time. The apparatus can include an analyzer configured to calculate a first velocity based on a first reflected laser beam reflected from the object in response to the first laser beam. The analyzer can be configured to calculate a second velocity based on a second reflected laser beam reflected from the object in response to the second laser beam. The first location can be targeted by the first laser subsystem and the second location can be targeted by the second laser subsystem such that the first velocity is substantially the same as the second velocity.
A detector (110) for determining a position of at least one object is proposed. The detector (110) comprises: —at least one angle dependent optical element (130) adapted to generate at least one light beam (131) having at least one beam profile depending on an angle of incidence of an incident light beam (116) propagating from the object (112) towards the detector (110) and illuminating the angle dependent optical element (130), wherein the angle dependent optical element (130) comprises at least one optical element selected from the group consisting of: at least one optical fiber, in particular at least one multifurcated optical fiber, in particular at least one bifurcated optical fiber; at least one diffractive optical element; at least one angle dependent reflective element, at least one diffractive grating element, in particular a blaze grating element; at least one aperture stop; at least one prism; at least one lens; at least one lens array, in particular at least one microlens array; at least one optical filter; at least one polarization filter; at least one bandpass filter; at least one liquid crystal filter, in particular a liquid crystal tunable filter; at least one short-pass filter; at least one long-pass filter; at least one notch filter; at least one interference filter; at least one transmission grating; at least one nonlinear optical element, in particular one birfringent optical element; —at least two optical sensors (113), wherein each optical sensor (113) has at least one light sensitive area (121), wherein each optical sensor (113) is designed to generate at least one sensor signal in response to an illumination of its respective light-sensitive area by the light beam (131) generated by the angle dependent optical element (130); at least one evaluation device (133) being configured for determining at least one longitudinal coordinate z of the object (112) by evaluating a combined signal Q from the sensor signals.
A light detection and ranging (LiDAR) device comprising: a laser emitting chip configured to emit laser, a laser detecting chip configured to detect laser, an emitting optic module configured to guide laser generated from the laser emitting chip to the outside of the LiDAR device, a detecting optic module configured to guide laser received from the outside of the LiDAR device to the laser detecting chip, an emitting optic holder located between the laser emitting chip and the emitting optic module, and an at least one emitting optic fixer located between the emitting optic holder and the emitting optic module, wherein the at least one emitting optic fixer is configured to fix a relative position between the laser emitting chip and the emitting optic module.
A method of controlling a mobile platform includes measuring a distance between the mobile platform and an object when the mobile platform is located at each of a plurality of positions to obtain a plurality of measured distances each being obtained at one of the plurality of positions. Location information of the plurality of positions of the mobile platform is obtained by an inertial measurement unit (IMU) on the mobile platform. The at least two distance sensors being configured to capture data from different directions. The method further includes determining a position of the object based on the plurality of measured distances and the location information and controlling the mobile platform to avoid the object based on the results of the determined position of the object.
An ultrasonic diagnostic imaging system produces spatially compounded trapezoidal sector images by combining component frames acquired from different look directions. A virtual apex scan format is used such that each scanline of a component frame emanates from a different point on the face of an array transducer and is steered at a different scanning angle. For different component frames the scanlines are steered at respectively different angles. In an illustrated example, the scanlines of each component frame are incremented by five degrees relative to the corresponding scanlines in a reference component frame. When the component frames are combined for spatial compounding, the maximum number of component frames are combined over virtually the entire image field.
An ultrasound system comprising a probe adapted for emitting and receiving ultrasound waves inside a medium, and a processing unit connected to said probe and adapted for processing signals from the probe. The probe is configured so as to behave as a Fresnel lens for focusing the ultrasound waves. The processing unit analyses signals from the probe for sensing the medium at a plurality of focal points.
A method with radio detection and ranging (radar) data processing may include: obtaining, by a radar sensor, input radar data; and generating, using a resolution increase model, output radar data from the input radar data and reference data, wherein the output radar data has a resolution greater than a resolution of the input radar data.
The present disclosure provides a system and method for removing noise from an ultrasonic signal using a generative adversarial network (GAN). The present disclosure provides three input formats for the neural network (NN) in order to feed one-dimensional (1D) input data to the network. The system is generalizable to multiple noise sources, as it learns from different motion functions and noise types. The end-to-end system of the present disclosure is trained on raw ultrasonic signals with very little pre-processing or feature extraction.
An apparatus for cleaning a lidar sensor may include: a signal analyzer configured to distinguish foreign matters adhering to a window cover, using a signal inputted from a laser receiver of a lidar sensor; a cleaner configured to remove the foreign matters adhering to the window cover; and a controller configured to control the cleaner according to the foreign matters distinguished by the signal analyzer.
An optical proximity sensor that increases a degree of freedom in an arrangement position is provided. The optical proximity sensor includes: a light detecting unit comprising a light detecting element on a substrate, a first transparent unit that covers the light detecting element, and a light-shielding unit that covers the first transparent unit; and a light emitting unit comprising a light emitting element on the substrate, a second transparent unit that covers the light emitting element, and the light-shielding unit that covers the second transparent unit, in which the light-shielding unit causes at least any of the first transparent unit and the second transparent unit to be exposed from a side surface of a package of the optical proximity sensor.
In an embodiment, a method for generating a target set using a radar includes: generating, using the radar, a plurality of radar images; receiving the plurality of radar images with a convolutional encoder; and generating the target set using a plurality of fully-connected layers based on an output of the convolutional encoder, where each target of the target set has associated first and second coordinates.
In one embodiment, an image processing apparatus includes processing circuitry. The processing circuitry acquires an image in which a coil is depicted. The processing circuitry acquires, from the image, information on disposition of the coil and information on a port to which the coil is connected.
A magnetic field sensor may include a plurality of MTJ elements. Each MTJ element of has a state indicated by a magnetic moment direction of a sensing layer relative to a pinned, reference layer in an absence of an external magnetic field. The plurality of MTJ elements are arranged into two identical sets of at least two MTJ elements, where each MTJ element in each respective set has a different state. The states of the MTJ elements are arranged in a manner to measure the external magnetic field regardless of the direction of the external magnetic field. The MTJ elements include identical layers, and are electrically serially connected.
Methods and apparatus for a magnetoresistive (MR) sensor including a seed layer having a CoFe layer for canceling hysteresis in the MR sensor. The MR stackup can include a free layer and a reference layer. The seed layer having CoFe provides a desired texturing of the stackup to cancel hysteresis effects.
A sensor die may include a set of sensing elements and a test structure associated with determining a magnetic sensitivity of the set of sensing elements. The test structure includes a first test sensing element sensitive in a direction in a plane defined by a surface of the sensor die, a second test sensing element sensitive in the direction in the plane defined by the surface of the sensor die, and a wire on chip (WoC) associated with applying a magnetic field to the first test sensing element and the second test sensing element. The first test sensing element, the second test sensing element, and the WoC may be arranged such that, when current flows through the WoC, the first test sensing element senses a component of the magnetic field in the direction, and the second test sensing element senses a component of the magnetic field in a perpendicular direction.
A magnetic field monitor includes a magnetic field sensor that generates an electronic signal at a time period representing a magnetic field of the environment and includes a sensor transducer having a sensor bobbin, a primary coil, a secondary, over-winding coil, a sensor circuit, a controller connected to the primary coil, and a digitally controlled potentiometer connected to the secondary coil and controller. A non-linear output is converted to a quantitative linear output.
A method and a measuring device for detecting a leakage current in an ungrounded, single-phase alternating-current power supply system. A variable test resistance is switched between one of the outer conductors and ground and starting from a minimally admissible test-resistance value, at least one of three support test-resistance values is determined as support locations. In an equivalent circuit of the modeled alternating-current power supply system, an equations system is set up for describing the dependency of currents and voltages. An extrapolation on the test-resistance value zero leads to a calculated test current which corresponds to the leakage current to be detected. Consequently, a ground fault situation may be simulated without actually causing a dangerous ground fault.
A method for predicting energy consumption of a vehicle using a statistical model. The method includes (i) predicting a set of future input vectors for the vehicle at defined time intervals corresponding to a plurality of future points in time based on a subset of a plurality of reference input vectors previously generated at the defined time intervals at a plurality of previous points in time, (ii) predicting a change in the energy level of the vehicle using a processor and the statistical model, and (iii) providing results corresponding to the predicted change in the energy level to an output unit of the vehicle. Each reference input vector comprises a vehicle input vector and a database input vector associated with each point in time of the plurality of previous points in time. The database input vector for each defined time interval may be based on at least one of a plurality of environmental data and information about a road condition.
A memory device includes a plurality of pins, a controller die coupled to the isolation pin, and a memory die. The plurality of pins include an isolation pin, a test mode select pin configured to switch an operation mode of the memory die, a test clock pin configured to receive a test clock, and a test data pin configured to perform a data transmission. The controller die is coupled to the isolation pin. The memory die is coupled to the test mode select pin, the test clock pin, and the test data pin.
A circuital system that includes a differential low-pass filter having a differential output and operable in a first voltage domain. Some embodiments include a differential integrator including a differential input and a differential output, and operable in a second voltage domain different from the first voltage domain. Some embodiments include a pair of AC coupling capacitors coupling the differential output of the differential low-pass filter to the differential input of the differential integrator.
Systems, devices, and associated methods are provided for testing and tuning radiofrequency (RF) modules. An example system includes a test station including an imaging device, a measurement device, and a robotic arm. The system may include a rotary stage coupled with the robotic arm, measurement probes disposed in the rotary stage and operably coupled with the measurement device, and tuning tips disposed in the rotary stage. The system may include a galvo scanner and laser to remove conductive material. In operation, the test station may perform a testing procedure on an RF module where the measurement probes generate testing data indicative of testing parameters. The test station may perform a tuning procedure on the RF module where a tuning tip or the laser modifies the RF module based on the testing parameters. The testing and tuning may be performed by a user, semi-autonomously, or autonomously.
A method of treating a subject having Alzheimer's disease can include assaying a biological medium obtained from the subject for a biomarker selected from the group consisting of Biomarker 1, Biomarker 2, Biomarker 3, Biomarker 4, Biomarker 5, Biomarker 6, Biomarker 7, Biomarker 8, Biomarker 9, Biomarker 10, Biomarker 11, and combinations thereof, where Biomarker 1 has a mass-to-charge ratio (m/z) of 229.13, Biomarker 2 has a m/z of 514.38, Biomarker 3 has a m/z of 602.44, Biomarker 4 has a m/z of 620.42, Biomarker 5 has a m/z of 630.47, Biomarker 6 has a m/z of 703.56, Biomarker 7 has a m/z of 724.52, Biomarker 8 has a m/z of 778.54, Biomarker 9 has a m/z of 799.66, Biomarker 10 has a m/z of 824.60, and Biomarker 11 has a m/z of 842.61. The method can also include relating a characteristic of the biomarker to a presence of Alzheimer's disease in the subject and treating the subject for Alzheimer's disease.
A blood glucose level measuring chip exhibits excellent blood spreading ability and can maintain a reaction rate of blood with a reagent, even where the blood has a high hematocrit value (Ht). The blood glucose level measuring chip includes a blood glucose level measuring reagent including a supply port through which blood is supplied, a flow path having the supply port formed at one end of the flow path, and a blood glucose level measuring reagent containing an aromatic hydrocarbon having at least one sulfonic acid group disposed on an inner wall defining the flow path, wherein a ratio A/B is 3.7 mmol/L or more to 184.8 mmol/L when A (mmol) represents the total molar amount of aromatic hydrocarbons contained in the blood glucose level measuring reagent, and B (L) represents a volume of a region in which the blood glucose level measuring reagent and the blood are dissolved.
The invention includes, in part, methods and compounds for diagnosing diseases and conditions characterized by altered threonyl-tRNA synthetase (TARS) activity, which include, but are not limited to diseases and conditions in which angiogenesis is altered. In some embodiments of the invention, a level of a TARS molecule is determined and compared to a control level of TARS to assess onset, progression, and/or regression of a disease or condition associated with altered TARS activity.
The purpose of the present invention is to: provide an agent that effectively suppresses inhibition of antigen-antibody reaction in an immunoassay using a sample containing a body fluid, in particular, a component derived from a biological mucosal membrane, such as saliva; and to suppress false positive and false negative results in the immunoassay. The present invention provides an agent for suppressing inhibition of immune reaction, characterized in that the agent comprises a compound of the following (1) or (2): (1) Sulfonic acid compound of the formula R1—SO3H or a salt thereof. (In the formula, R1 is selected from the group consisting of: a straight-chain C5-C30 alkyl group; a straight-chain C1-C30 alkyl group substituted with an aryl group having at least one straight-chain C5-C30 alkyl group; and an aryl group having at least one straight-chain C5-C30 alkyl group. These groups may include a substituent group); and (2) Quaternary ammonium ion of the formula N+—R2R3R4R5 or a salt thereof. (In the formula, R2—R5 are each independently a straight-chain C1-C30 alkyl group, or an aryl group substituted with at least one straight-chain C5-C30 alkyl group. These groups may include a substituent group); wherein the agent is capable of suppressing immune reaction inhibitory action caused by a body fluid in an immunoassay sample.
Capturing data in a drone enabled environmental for testing soil and ecological decision making includes initiating, using a computer, collection of data from multiple sources using a drone. The data includes information about soil at a specified soil location, in response to the drone flying over air space of a physical or geographical location respective to the soil location and/or landing at the soil location. Soil data is received, as part of the data, from the drone in response to testing the soil. The testing of the soil can include conducting a ground conductivity test using two or more probes coupled to respective landing pads of the drone, and positioning the drone over the soil location such that the two or more probes contact the soil. The data is analyzed to determine a best location for seeding and growing a plant in the soil.
Gas exchange analysis methods and systems utilize a water vapor buffering component including a material configured to buffer water vapor in a flow of a gas, whereby fluctuations in the water vapor content in the flow of the gas are slowed for components downstream from the water vapor buffering component. Components downstream of the water vapor buffering component may include: a first water vapor sensor configured to receive the flow of the gas from the water vapor buffering component and configured to measure a first concentration of water vapor in the gas; a sample chamber configured to receive the gas exiting the water vapor buffering component or the first water vapor sensor and to hold a sample capable of adding or removing water vapor from the gas; and a second water vapor sensor configured to measure a second concentration of water vapor in the gas exiting the sample chamber.
An environmental emission monitoring system may include satellites configured to sense GHG emissions data for an AOI, and a server. The server may be configured to obtain the sensed GHG emissions data from the satellites, obtain geospatial positions of stationary GHG emitting point sources within the AOI, and generate expected stationary GHG emission data for the stationary GHG emitting point sources within the AOI and based upon the geospatial positions. The server may also be configured to obtain geospatial path data for GHG emitting vehicles moving within the AOI, generate expected vehicle GHG emission data for the GHG emitting vehicles moving within the AOI and based on the geospatial path data, and compare a sum of the expected stationary GHG emission data and expected vehicle GHG emission data with the sensed GHG emissions data to identify any stationary GHG emitting point source and any GHG emitting vehicle outside of a respective GHG emission threshold.
A system, method and a monitoring device for monitoring air quality of a closed space are disclosed. A plurality of ducts is coupled with the closed space and the plurality of monitoring devices monitors a quality of air inside the plurality of ducts. Each of the plurality of monitoring devices stores a location of placement of each of a monitoring device present inside the closed space, learns a level of carbon dioxide present inside the closed space over a period of time and estimate a number of occupants present inside the closed space based on the level of carbon dioxide present inside the closed space using a machine learning model. Further, the plurality of monitoring devices transmits the monitored quality of air inside the closed space along with the location of the placement of each of the monitoring device and the identified number of occupants to a cloud server.
A monitoring and gas detection information notification system includes monitoring devices and a cloud data processing device. The monitoring devices are respectively disposed at corresponding fixed positions, each of the monitoring devices includes a monitoring module and an actuator-sensor module. The monitoring module captures an image and converts the image into an image data. The actuator-sensor module is disposed in the monitoring module and includes one or more actuators for guiding a gas into the monitoring module and includes one or more sensors for generating a gas detecting data. The cloud data processing device stores and intelligently analyzes the image data and the gas detecting data to generate a processed data, and the cloud data processing device transmits the processed data to a notification processing system so as to conduct a notification of monitoring information and gas detecting information.
An electrochemical detector includes: a solution chamber and a substance selection structure separating the chamber into individual compartments, wherein the solution chamber is arranged to retain and separate solutions in each of the individual compartments; and a pair of electrodes each connecting the respective individual compartment, wherein the pair of electrodes is arranged to form a conductive path across the electrodes when in contact with the solutions retained in the solution chamber. The substance selection structure is arranged to interact with a target substance in the solution so as to alter an electrical characteristic of the conductive path defined by the pair of electrodes, the solution retained in the individual compartments in the solution chamber and the substance selection structure.
A reference electrode system for a pH-sensor system includes: a first junction having a membrane with a sealed side; a reference electrode, the reference electrode and/or an electrically conducting wire of the reference electrode being covered completely except for an end portion of the reference electrode, by a sleeve; and a tube that is arranged, at least partly, around the reference electrode, the electrically conducting wire, and the sleeve, the tube having a closed end which is arranged near the end portion of the reference electrode.
The present disclosure relates to a conductivity measuring system of a fluid including a solvent and an ionic solute, comprising: —a holder comprising an isolated holder wall defining a fluid channel for holding fluid, wherein the holder is shaped to allow an electrical current induced in the fluid to form a current loop; —an excitation device configured to excite an electric field inside a first part of the fluid channel, the excitation device comprising an electrical signal generator configured to generate an alternating current signal and a conducting slab; —a sensing device arranged at a position remote from the first part of the fluid channel and configured to sense a voltage signal (V) resulting from the changing magnetic field resulting from the current generated inside the fluid by the excitation device.
A performance evaluation device and a design method of a cement for well cementing in a penetrated hydrate layer are provided. The performance evaluation device includes an equivalent wellbore, an inner circulation system, an outer circulation system, a thermal insulation cover, a bracket, a temperature sensing system, and a cement mold. The device can simulate a true downhole situation, conduct an evaluation experiment on the heat insulation performance of a cementing cement, and conduct experiments at different temperatures with automatic temperature control. The design method is to use a low-hydration, early-strength, and heat-insulating cement slurry system during the well cementing in a penetrated hydrate layer, where the low-hydration and early-strength characteristics ensure the effective sealing of a hydrate layer during a cementing process, and the heat insulation characteristic results in low heat conductivity and thus can ensure the stability of a hydrate layer during a production operation.
A mechanism for thermal testing is described. A test vehicle includes a heating element, a thermal sensor and a processor. The processor is configured to control the heating element to output an amount of the energy per unit time. Temperature readings are received using the thermal sensor. A thermal property associated with a thermal mass is determined based at least in part the amount of the energy output and the received temperature readings.
Methods and systems for realizing a high radiance x-ray source based on a high density electron emitter array are presented herein. The high radiance x-ray source is suitable for high throughput x-ray metrology and inspection in a semiconductor fabrication environment. The high radiance X-ray source includes an array of electron emitters that generate a large electron current focused over a small anode area to generate high radiance X-ray illumination light. In some embodiments, electron current density across the surface of the electron emitter array is at least 0.01 Amperes/mm2, the electron current is focused onto an anode area with a dimension of maximum extent less than 100 micrometers, and the spacing between emitters is less than 5 micrometers. In another aspect, emitted electrons are accelerated from the array to the anode with a landing energy less than four times the energy of a desired X-ray emission line.
The method of analyzing one or more samples arranged in sample receptacles of a platform that is configured to receive a plurality of separate samples includes the steps of measuring electromagnetic radiation transmitted or emitted by each sample, repeating the measurement a plurality of times at predetermined intervals, on the basis of each measurement, forming a result matrix comprising a plurality of cells, each cell of the result matrix corresponding to a sample receptacle of the plat-form, wherein a measurement value of each sample is used as an input for determining the visual properties of the respective cell in the result matrix, and displaying the results as consecutive matrixes in respect of time.
Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
The disclosure relates to a gas analysis method by Raman spectrometry, the method comprising the steps of generating by a laser source a laser beam sweeping a range of frequencies including a plurality of resonance modes of an optical cavity holding gases to be analyzed; delivering the laser beam into the cavity; extracting from the cavity a feedback beam that is sent adjusted in phase and amplitude to the source; during the frequency range sweeping, detecting light intensity peaks in the laser beam in the cavity, the phase of the feedback beam being adjusted to reduce shape asymmetries of the peaks, the amplitude of the feedback beam being adjusted to reduce intervals of zero intensity between the peaks; and performing a spectral analysis of the light inelastically scattered in the cavity, to determine the composition of the gases to be analyzed.
A flow-cytometer has an excitation light source generating an excitation light that excites one or more bio-cells in a bio-sample carried by a flow path to luminesce. The flow-cytometer includes a spectrum dispersive element that disperses the luminescent light generated by the bio-sample into a photo-detector array. The flow-cytometer further includes a digital signal processor (DSP) that receives signals from the photo-detector array and generates a self-triggering signal based on the luminescent light generated by the bio-cells in bio-sample. The self-triggering signal triggers data capture in the DSP to improve synchronization with the data generated from signals received from the photo-detector array.
Disclosed are an optical analysis device and an optical analysis method. The present invention provides an optical analysis device for optically analyzing a flow cell, including: a light source configured to emit light to the flow cell; an optical detector including a plurality of detection elements that detects optical signals from reaction regions of the flow cell; and an optical mask including light transmissive mask holes disposed at a front end of each of the detection elements, and an optical analysis method using the same.
Provided is an apparatus for fatigue testing a bulge tool having a WH-type skeleton, the apparatus including: a fixing bracket having tool holes penetrated through opposite sides thereof; a tool housing coupled to the tool hole of the fixing bracket and having the bulge tool inserted and installed therein; a moving rail installed at one side of the fixing bracket in a lengthwise direction of the tool housing and providing a reciprocating movement path facing the tool housing; a moving bracket reciprocating along the moving rail; a pusher protrudingly installed from the moving bracket toward the tool housing and moving in and out of the bulge tool; a measurement means installed between the pusher and the moving bracket, measuring a load applied to the bulge tool; and a drive means for generating power reciprocating the moving bracket on the moving rail.
This disclosure provides methods for producing a sample of subcellular organelles, particularly nuclei, from a tissue. In some embodiments, this disclosure provides a method of processing a tissue sample involves performing enzymatic/chemical disruption of tissue in a chamber to produce disrupted tissue comprising released cells and/or nuclei and debris; separating the released cells and/or nuclei from the debris therein; and moving the released cells and/or nuclei. In some instances, the method comprises mechanical disruption of the tissue sample.
A collecting apparatus for bacteria includes: a laser beam source configured to emit a laser beam; and a container configured to hold a dispersion liquid in which a plurality of bacteria are dispersed. The container has a bottom surface and an inner side surface. A thin film for converting the laser beam from the laser beam source into heat is formed on the bottom surface. At the inner side surface, immersion wetting occurs by the dispersion liquid when the inner side surface comes into contact with the dispersion liquid. The thin film is configured to produce a thermal convection in the dispersion liquid by heating the dispersion liquid. The inner side surface is configured to produce a Marangoni convection at a gas-liquid interface as an interface between the dispersion liquid and gas around the dispersion liquid.
A weld test plug has a flange; an actuator rod mounted to the flange, the actuator rod having: a part expander; an annular seal; and an axial stop; in which the actuator rod is connected to, during use, cause the part expander to actuate: the axial stop to move in a radially outward direction relative to the actuator rod; and the annular seal to radially expand and abut the axial stop. A method includes inserting an actuator rod into an open end of a vessel, the actuator rod carrying an annular seal, and an axial stop; sealing the open end of the vessel around the actuator rod; operating the actuator rod to actuate: the axial stop to move in a radially outward direction relative to the actuator rod; and the annular seal to radially expand to abut the axial stop and seal against an inner circumferential surface of the vessel.
A manufacturing method of a capacitive pressure sensor includes attaching a first electrode and a second electrode onto a first surface of a flexible substrate, attaching a signal processing unit to the flexible substrate, forming a dielectric layer over the first electrode or the second electrode, and folding the flexible substrate so that the first electrode and the second electrode face each other with the dielectric layer being disposed therebetween.
The disclosure relates to technology for determining stress on integrated circuits. These include using ring oscillators formed on the integrated circuit, where one ring oscillator has its frequency dependent on the current flowing through its stages being limited by its NMOS devices and another ring oscillator has its frequency dependent on the current flowing through its stages being limited by its PMOS devices. This allows the stress on the integrated circuit to be determined in different directions along the integrated circuit. A temperature sensor can be used to compensate for temperature dependence on the frequencies of the ring oscillators.
Methods, non-transitory computer-readable storage mediums and electronic devices are provided for controlling temperature. A terminal obtains a target environment temperature value of an environment where the terminal is located. When the terminal is being charged, the terminal determines a target temperature control strategy according to the target environment temperature value. The terminal controls a temperature of the terminal according to the target temperature control strategy.
A compact mmW spectroscopy cell system for detecting volatile organic compounds (compounds) in a gas. The system includes a gas collection chamber, an input buffer cavity for receiving the gas from the gas collection chamber, pumping devices to pass the gas from the buffer cavity to an absorption cell and maintain pressure, and a transceiver connected to the cell. The transceiver interrogates the absorption cell filled with the gas by passing a high frequency electromagnetic signal and sweeping the signal to generate an absorption spectra which is compared to a spectroscopy database for detecting the compounds in the gas. The absorption cell, collection chambers, and pumping devices are fabricated with standard CMOS processing techniques at chip and wafer scale. The transceiver bonded to the absorption cell with chip scale integration.
A marker is arranged to indicate the presence of ultraviolet radiation. The marker includes at least an emitting layer having a fluorescent material arranged to emit visible light in a first range of wavelengths in response to excitation by ultraviolet radiation in a second range of wavelengths. The emission of visible light is reversible, and the marker is reusable. The marker may be a warning sign, and may be adhered to a surface or incorporated into a freestanding portable apparatus.
A sensor system includes a sensor network comprising at least one optical fiber having one or more optical sensors. At least one of the optical sensors is arranged to sense vibration of an electrical device and to produce a time variation in light output in response to the vibration. A detector generates an electrical time domain signal in response to the time variation in light output. An analyzer acquires a snapshot frequency component signal which comprises one or more time varying signals of frequency components of the time domain signal over a data acquisition time period. The analyzer detects a condition of the electrical device based on the snapshot frequency component signal.
An occupant or object sensing system in a vehicle includes electrical circuits for resistive and/or capacitive sensing and corresponding circuits shielding the sensing system from interference. A sensing circuit and a shielding circuit may be printed by screen printing with conductive ink on opposite sides of a non-conductive substrate. The substrate is a plastic film or other fabric that has an elastic memory structure that is resilient to stretching. The conductive inks used to print circuits onto the substrate have a similar resilience to stretching such that the substrate and the circuits thereon can be subject to deforming forces without breaking the printed circuits. The substrate may be covered with a carbon polymer layer to provide alternative conductive paths that enable fast recovery for conduction in the presence of any break in the printed conductive traces on the substrate.
A network system determines dissimilarities between a digital map and trace data of a road network in an area as service providers and service requestors coordinate service using the road network in the area. To determine dissimilarities the network system can determine a suggested route, determine a predicted route, receive executed trace data, and compare the predicted route data to the executed trace data for the suggested route. The network system may aggregate trace data when determining a dissimilarity. The network system can quantify the differences between traces to determine dissimilarities. Quantifications can include, ratios, bounds, and scores. The network system can determine and alternate route if a dissimilarity indicates that the state of a road segment has changed (e.g., from “open” to “closed”). The network system can modify guidance instructions if a dissimilarity indicates that a guidance instruction is misleading.
The disclosure provides an information processing apparatus, an information processing system, and an information processing method capable of allowing a user to approach a destination intuitively. An information processing apparatus according to the present technology includes a position-coordinate acquisition part, a direction acquisition part, a direction calculation part, and a haptic-feedback determining part. The position-coordinate acquisition part acquires a position coordinate of the information processing apparatus. The direction acquisition part acquires an apparatus direction that the information processing apparatus faces. The direction calculation part calculates a target direction being a direction of a target with respect to the information processing apparatus from a position coordinate of the target and the position coordinate of the information processing apparatus. The haptic-feedback determining part determines a haptic feedback to be presented to a user on the basis of an angle formed by the apparatus direction and the target direction.
A vehicle control apparatus is configured to execute processing to calculate a correction travel route and a control target value on the basis of a target travel route under a specified constraint condition. The vehicle control apparatus calculates the correction travel route by using an evaluation function in a manner to minimize a difference of the correction travel route from the target travel route. The evaluation function is a sum that is acquired by weighting the evaluation value at each prediction point by weight coefficients. A time interval between each adjacent pair of the prediction points is set to be increased from a near side toward a far side from the vehicle. The weight coefficients are set such that weight at the prediction point on the far side from the vehicle is less than the weight at the prediction point on the near side of the vehicle.
Disclosed herein is a course guidance method for the efficient sailing of a ship. The course guidance method for the efficient sailing of a ship is performed by a ship's course guidance system, and may include: a per-ship location information extraction step of extracting location information for each ship from collected Auto Identification System (AIS) data; a ship location plotting step of plotting the location of the ship based on the location information on an electronic navigational chart; a clustering step of clustering points located within a predetermined area among a plurality of points plotted on the electronic navigational chart; a course network generation step of generating ship course networks using the clustered points; and a recommended course acquisition step of acquiring a recommended course for each ship based on the generated ship course networks.
A micromechanical component for a yaw rate sensor. The component includes a substrate having a substrate surface, a first rotor mass developed in one piece, which is able to be set into a first torsional vibration about a first axis of rotation aligned perpendicular to the substrate surface, and at least one first component of the micromechanical component. The first rotor mass is connected to the at least one first component via at least one first spring element. The at least one first spring element extends through a lateral concavity on the first rotor mass in each case and is connected to a recessed edge region of the first rotor mass. A yaw rate sensor and a production method for a micromechanical component for a yaw rate sensor, are also described.
A magneto-resistive angle sensor system for measuring a rotational angle of a rotating component in an out-of-shaft configuration. The magneto-resistive angle sensor system including a magnet, which is attached to the rotating component. The magneto-resistive angle sensor system further including a magneto resistive sensor. A sensitive plane of the magneto-resistive sensor is positioned with an offset to the center of the magnet in an offset direction.
A device for detecting wear of a wear member composed of electrically resistive material. The wear member comprises at least two electrodes separated from each other, where each electrode overlies, or is embedded in, an outer surface of the electrically resistive material. One of the electrodes is connected to a resistor at a measurement node to form a resistive voltage divider. A voltage measurement device measures a change in voltage at the measurement node, where the change is voltage is indicative of the degree of removal of resistive material from a face of the wear member and where the change in voltage is continuously variable and not limited to discrete wear levels.
The present invention concerns a wadding system, in particular a specific wadding system dedicated to shot cartridges made of materials other than lead.
The present invention provides a subsonic ammunition including a polymeric casing body; a propellant insert positioned in the propellant chamber to reduce the internal volume of the propellant chamber; a propellant disposed and confined within the propellant chamber; a primer insert positioned at the body base and in communication with the propellant chamber; a primer and diffuser disposed in the primer insert in combustible communication with the propellant; and a projectile frictionally fitted in the mouth in combustible communication with the propellant.
A method of determining an aim point of a firearm or simulated firearm at a time of firing by continuously pulsing a laser coaxially aligned with a barrel of the firearm or simulated firearm. The aim point is then continuously detected by a camera system observing the target. A shot firing event is detected and the last detected laser pulse location on the target prior to the shot firing event is determined. The aim point of the firearm or simulated firearm at the time of firing is extrapolated from the last detected laser pulse location and at least one laser pulse location prior to the last laser pulse location.