US11695258B2
This spark plug includes a cap portion covering a center electrode and an end of a ground electrode from a front side. In a cross section including an axial line, where a pitch of an external thread of a metal shell is X (mm), an axial-line-direction distance between a crest of a rear-end ridge of a full thread portion of an external thread and a rear end of a contact portion of an insulator with which the metal shell contacts directly or via another member is A (mm), an axial-line-direction distance between the rear end of the contact portion and a front end of the insulator is B (mm), and an axial-line-direction distance between the rear end of the contact portion and a seating surface of the metal shell is C (mm), 0
US11695254B2
An optical apparatus comprises a semiconductor substrate and a slab-coupled optical waveguide (SCOW) emitter disposed on the semiconductor substrate. The SCOW emitter comprises an optical waveguide comprising: a first region doped with a first conductivity type; a second region doped with a different, second conductivity type; and an optically active region disposed between the first region and the second region. The optically active region comprises a plurality of quantum dots.
US11695252B2
Provided are a structured light projector that generates and projects structured light, and an electronic apparatus including the structured light projector. The structured light projector includes an illuminator configured to emit light, a pattern mask configured to form structured light by partially transmitting and partially blocking incident light from the illuminator based on a pattern of the pattern mask, and a lens configured to project the structured light. The illuminator includes a plurality of illumination areas respectively facing a plurality of areas of the pattern mask, wherein intensities of lights respectively emitted by the plurality of illumination areas are different from one other.
US11695242B2
An embodiment connector assembly includes a housing including an inner space formed therein, wherein ends of a main-line terminal and a sub-line terminal are inserted into a first side of the inner space, a main-line port inserted into and fixed to the inner space of the housing and electrically connected to the end of the main-line terminal inserted into the inner space, a sub-line port inserted into and fixed to the inner space of the housing and electrically connected to the end of the sub-line terminal inserted into the inner space, and a noise filter disposed between the main-line port and the sub-line port and electrically connected to each of the main-line port and the sub-line port, wherein the noise filter is configured to reduce a noise in a signal transmitted between the main-line port and the sub-line port.
US11695237B2
A connector comprises an inner conductor, an outer conductor basket and an annular abutment/alignment guide disposed therebetween. The inner conductor socket transmits RF signals from one connector portion to another connector portion across a mating interface. The outer conductor basket comprises a plurality of axially projecting fingers operative to electrically ground the connector. The annular abutment comprises an outwardly facing abutment surface and an alignment guide disposed integrally with the annular abutment. The alignment guide has a flanged end portion projecting: (i) radially outboard from an upper or forward end of the annular abutment and (ii) over the tip ends of each axially projecting basket finger. The annular abutment: (a) inhibits inward radial displacement of the axially projecting fingers, (b) prevents plastic deformation of the basket fingers upon annular abutment of a non-mating connector, and (c) aligns a mating connector so as to prevent damage to the basket fingers upon joining the mating connector.
US11695236B2
A first connector and a second connector of this connector assembly can mutually connect along the vertical direction. The first connector comprises a first housing provided with a sliding surface, a locking surface, and a receiving surface. The locking surface intersects, at an angle of 90° or less, with a line segment extending straight upward from the locking surface. The second connector comprises a second housing provided with a spring section and a locked section. The locked section can move forward and backward as the spring section elastically deforms. The locked section has a locked surface. When the second connector is in a separated state of being separated from the first connector, the locked surface intersects, at an angle of 90° or less, with a line segment extending straight upward from the locked surface. In a fitting step, the locked section moves downward while being pressed against the sliding surface. The locked section abuts the receiving surface upon moving downward on the sliding surface.
US11695232B2
Provided is an adapter. The adapter includes a housing and an elastic component. The elastic component is configured to connect the housing with an installation frame. The elastic component includes an installation body, a blocking portion and a clamping elastic piece, the blocking portion and the clamping elastic piece are disposed on the installation body. The installation body is configured to be detachably connected to the housing. A first clamping gap capable of accommodating the installation frame is provided between the blocking portion and the clamping elastic piece.
US11695219B2
A stacked patch antenna array includes: a conductive ground plane configured to connect to a plurality of electrical transmission lines for transmitting and/or receiving electrical signals; a driven layer adjacent to the conductive ground plane formed of a dielectric material and comprising a plurality of first resonant circular patches, each electrically connecting to a respective electrical transmission line such that a received electrical signal excites and generates an electromagnetic signal and/or a received electromagnetic signal excites and generates an electrical signal; an electrically insulating spacer adjacent to the driven layer; and a coupled layer adjacent to the electrically insulating spacer formed of a dielectric material and comprising a plurality of second resonant circular patches which are symmetrically positioned with respect to the first circular resonant patches of the driven layer and excited by the electromagnetic waves generated by the first resonant circular patches, wherein the electrically insulating spacer electrically separates the driven layer and the coupled layer having a thickness such that the resonances of the first and second resonant circular patches constructively combine.
US11695214B2
Reflectarray antenna elements, reflectarrays, and a method of operating an antenna element are described. A reflectarray antenna element includes a patch (14) of electrically conductive material for reflecting an electromagnetic field; a dielectric substrate (12) providing an RF ground; first and second phase control lines (16, 18) of electrically conductive material arranged to interact with electromagnetic radiation with a first polarisation; a first binary switching device (24) having an ON or OFF state disposed between the patch and ground, and configured to selectively electrically couple the patch to ground via the first phase control line; a second binary switching device (26) having an ON or OFF state disposed between the patch and ground, and configured to selectively electrically couple the patch to ground via the second phase control line; a single DC bias input electrically coupled to the patch and configurable to different discrete voltage levels for selectively controlling the states of the switching devices. Selective operation of the first and second binary switching devices occurs by means of the DC bias input provides phase control of electromagnetic radiation dependent on the state of the switching devices. Described is a phase control mechanism of unit cells to enable a reconfigurable/smart reflectarray platform.
US11695209B2
Systems and methods are provided for a digital beamformed phased array feed. The system may include a radome configured to allow electromagnetic waves to propagate; a multi-band software defined antenna array tile; a power and clock management subsystem configured to manage power and time of operation; a thermal management subsystem configured to dissipate heat generated by the multi-band software defined antenna array tile; and an enclosure assembly. The multi-band software defined antenna array tile may include a plurality of coupled dipole array antenna elements; a plurality of frequency converters; and a plurality of digital beamformers.
US11695206B2
A phased array antenna system having radiating units unitarily formed and arranged in an array by direct metal sintering avoiding assembly requirements. Each radiating unit includes a free-space impedance transformer having first, second and third radiator elements. Each radiating unit includes an embedded balun having first, second, and third impedance transition elements located generally concentric with the first, the second, and the third radiator elements and distally connected respectively to form a first integrated coaxial interface, a second integrated coaxial interface, and an integrated ground interface. Each radiating unit includes a ground plane electrically coupled to the integrated ground interface.
US11695204B2
An apparatus is disclosed herein for a cylindrically fed antenna and method for using the same. In one embodiment, the antenna comprises: an antenna feed to input a cylindrical feed wave; a first layer coupled to the antenna feed and into which the feed wave propagates outwardly and concentrically from the feed; a second layer coupled to the first layer to cause the feed wave to be reflected at edges of the antenna and propagate inwardly through the second layer from the edges of the antenna; and a radio-frequency (RF) array coupled to the second layer, wherein the feed wave interacts with the RF array to generate a beam.
US11695201B2
Radio frequency (RF) systems with tunable filters are provided herein. In certain embodiments, an RF system includes a first RF processing circuit configured to process a first frequency band of a first communication standard and a second frequency band of a second communication standard. The first frequency band and the second frequency band are close in frequency and/or partially overlapping in frequency. The first RF processing circuit includes a tunable filter for changing the bandwidth of the first RF processing circuit to enhance the robustness of the first RF processing circuit to blocker or jammer signals of a third frequency band.
US11695199B2
An antenna device includes a first substrate, a second substrate, an antenna layer, and a redistribution layer. The first substrate has a first surface, a second surface opposite to the first surface, and an inclined sidewall adjoining the first and second surfaces. The second substrate is below the first substrate. The first surface of the first substrate faces toward the second substrate. The antenna layer is located on the first surface of the first substrate. The redistribution layer extends from the second surface of the first substrate to the second substrate along the inclined sidewall of the first substrate, and the redistribution layer has a first section in contact with an end of the antenna layer.
US11695196B2
An antenna device intended to be used in a communication system of a timepiece, including a substrate; a first antenna circuit made on the substrate and having first and second strands which are connected and having a proximal end and a distal end, extending in parallel, a second antenna circuit made on the substrate and having third and fourth strands which are connected and having a proximal end and a distal end, and extending in parallel, an electrical junction link joining the proximal ends of the first and third strands; a connection portion configured to be bent relative to the electrical junction link, and including a conductive connection which is connected to the electrical junction link and including an electromagnetic shielding of the conductive connection.
US11695184B2
In certain embodiments, a system includes a belt for mechanically linking multiple energy storage cells together, wherein the multiple energy storage cells are grouped into at least first and second energy storage packs, each energy storage pack including at least one energy storage cell, the at least one energy storage cell of the first energy storage pack having a different energy storage characteristic from the at least one energy storage cell of the second energy storage pack. The system further includes an operational zone for receiving an energy storage pack and establishing an electrical connection between the received energy storage pack and an electrical device, and an actuator operable to move the multiple energy storage cells together to thereby dispose the first energy storage pack in the operational zone to establish the electrical connection with the electrical device.
US11695177B2
The present invention relates to an apparatus and a method of folding a pouch case of a battery cell, and more particularly, to an apparatus and a method of folding a pouch case of a battery cell capable of preventing a meandering in a folding process and reducing non-uniformity of a folding amount by forming a pre-folding line on a pouch wing and folding the pouch wing on the basis of the pre-folding line.
US11695169B2
The present disclosure concerns the production of precursor compounds for lithium battery cathodes.
Batteries or their scrap are smelted in reducing conditions, thereby forming an alloy suitable for further hydrometallurgical refining, and a slag. The alloy is leached in acidic conditions, producing a Ni- and Co-bearing solution, which is refined.
The refining steps are greatly simplified as most elements susceptible to interfere with the refining steps concentrate in the slag. Metals such as Co, Ni and Mn are then precipitated from the solution, forming a suitable starting product for the synthesis of new battery precursor compounds.
US11695168B2
A system and method for optimizing electrochemical cells including electrodes employing coordination compounds by mediating water content within a desired water content profile that includes sufficient coordinated water and reduces non-coordinated water below a desired target and with electrochemical cells including a coordination compound electrochemically active in one or more electrodes, with an improvement in electrochemical cell manufacture that relaxes standards for water content of electrochemical cells having one or more electrodes including one or more such transition metal cyanide coordination compounds.
US11695166B2
A system and method for optimizing electrochemical cells including electrodes employing coordination compounds by mediating water content within a desired water content profile that includes sufficient coordinated water and reduces non-coordinated water below a desired target and with electrochemical cells including a coordination compound electrochemically active in one or more electrodes, with an improvement in electrochemical cell manufacture that relaxes standards for water content of electrochemical cells having one or more electrodes including one or more such transition metal cyanide coordination compounds.
US11695159B2
A system and method for optimizing electrochemical cells including electrodes employing coordination compounds by mediating water content within a desired water content profile that includes sufficient coordinated water and reduces non-coordinated water below a desired target and with electrochemical cells including a coordination compound electrochemically active in one or more electrodes, with an improvement in electrochemical cell manufacture that relaxes standards for water content of electrochemical cells having one or more electrodes including one or more such transition metal cyanide coordination compounds.
US11695153B2
A solid electrolyte represented by general formula LiySiRx(MO4), where x is an integer from 1 to 3 inclusive, y=4−x, each R present is independently C1-C3 alkyl or C1-C3 alkoxy, and M is sulfur, selenium, or tellurium. Methods of making the solid electrolyte include combining a phenylsilane and a first acid to yield mixture including benzene and a second acid, and combining at least one of an alkali halide, and alkali amide, and an alkali alkoxide with the second acid to yield a product d represented by general formula LiySiRx(MO4)y. The second acid may be in the form of a liquid or a solid. The phenylsilane includes at least one C1-C3 alkyl substituent or at least one C1-C3 alkoxy substituent, and the first acid includes at least one of sulfuric acid, selenic acid, and telluric acid.
US11695151B2
Provided is a casing for a lithium metal secondary battery including: a battery casing material; at least one releasable capsule attached at least partially or totally to the inner surface of the casing material to cover the inner surface of the casing material; and a release solution supported in the releasable capsule, wherein the releasable capsule includes a capsule coating film and a capsule inner space surrounded with the capsule coating film, the release solution is supported in the capsule inner space, and the release solution includes a release agent and a solvent. A lithium metal secondary battery including the casing and a method for manufacturing the same are also provided. It is possible to increase releasability of the negative electrode in a lithium metal secondary battery and to improve nail safety by using the releasable capsule according to the present disclosure.
US11695149B2
Various arrangements for compressing a cylindrical battery cell are presented herein. The cylindrical battery cell may be wrapped in a buffer material. The buffer material may then be compressed using a compression mechanism. The buffer material may uniformly distribute pressure applied to the buffer material to a curved sidewall of the cylindrical battery cell.
US11695147B2
Disclosed is an antioxidant for a polymer electrolyte membrane of a fuel cell including cerium hydrogen phosphate (CeHPO4). The presence of cerium hydrogen phosphate in the antioxidant enhances the dissolution stability of cerium and improves the ability to capture water, leading to an increase in proton conductivity. In addition, the cerium hydrogen phosphate has a crystal structure composed of smaller cerium particles. This crystal structure greatly improves the ability of the antioxidant to prevent oxidation of the electrolyte membrane. Also disclosed are an electrolyte membrane including the antioxidant, a fuel cell including the electrolyte membrane, a method for preparing the antioxidant, a method for producing the electrolyte membrane, and a method for fabricating the fuel cell.
US11695136B2
The control device is configured so that when a temperature of the fuel cell at the time of start of power generation of the fuel cell is less than a standard temperature, it makes the fuel cell generate power so that the amount of heat generation of the fuel cell accompanying the power generation loss becomes a first amount of heat generation and so that when a cumulative value of current of a time period during which the fuel cell is made to generate power so that the amount of heat generation becomes the first amount of heat generation is equal to or greater than a predetermined cumulative value, it makes the fuel cell generate power so that the amount of heat generation becomes a second amount of heat generation larger than the first amount of heat generation.
US11695112B2
The present application provides a negative electrode active material, a process for preparing the same, and a secondary battery, a battery module, a battery pack and an apparatus related the same. The negative electrode active material comprises a core material and a polymer-modified coating layer on at least a part of a surface of the core material, the core material is one or more of a silicon-based negative electrode material and a tin-based negative electrode material, the polymer-modified coating layer comprises sulfur element and carbon element, the sulfur element has a mass percentage of from 0.2% to 4% in the negative electrode active material, the carbon element has a mass percentage of from 0.5% to 4% in the negative electrode active material, and the polymer-modified coating layer comprises a —S—C— bond.
US11695108B2
Cathode active materials are provided. The cathode active material can include a plurality of cathode active compound particles. A coating is disposed over each of the cathode active compound particles. The coating can include at least one of ZrO2, La2O3, a mixture of Al2O3 and ZrO2 or a mixture of Al2O3 and La2O3. The battery cells that include the cathode active material are also provided.
US11695101B2
A display panel includes a substrate; first electrodes and an auxiliary electrode disposed on a top side of the substrate, a plurality of light-emitting elements disposed on first electrodes and an auxiliary electrode, a second electrode, and a conductive barrier. The first pole of one light-emitting element is connected to one of the first electrodes. The second electrode is disposed on the light-emitting elements and connected to a second pole of one of the light-emitting elements. The conductive barrier is disposed between two adjacent light-emitting elements and electrically connected to the auxiliary electrode and the second electrode. Each of the two sidewalls of the conductive barrier includes a reflective electrode for reflecting light emitted by an adjacent light-emitting element.
US11695100B2
A light emitting diode (LED) includes a n-doped semiconductor material layer, a p-doped semiconductor material layer, an active region disposed between the n-doped semiconductor layer and the p-doped semiconductor layer, and a photonic crystal grating configured to increase the light extraction efficiency of the LED.
US11695090B2
Disclosed are infrared (IR) light detectors. The detectors operate by generating hot electrons in a metallic absorber layer on photon absorption, the electrons being transported through an energy barrier of an insulating layer to a metal or semiconductor conductive layer. The energy barrier is set to bar response to wavelengths longer than a maximum wavelength. Particular embodiments also have a pattern of metallic shapes above the metallic absorber layer that act to increase photon absorption while reflecting photons of short wavelengths; these particular embodiments have a band-pass response.
US11695089B2
A solar cell module is provided. The solar cell module includes a first substrate, a second substrate opposite the first substrate, a cell unit disposed between the first and second substrates, a first thermosetting resin layer disposed between the cell unit and the first substrate, a first thermoplastic resin layer disposed between the cell unit and the first thermosetting resin layer, a second thermosetting resin layer disposed between the cell unit and the second substrate, and a second thermoplastic resin layer disposed between the cell unit and the second thermosetting resin layer.
US11695082B2
A non-volatile memory cell is described. The non-volatile memory cell includes a substrate, insulators, a floating gate and a control gate. The substrate has a first fin and a second fin, wherein the second fin is located at a first side of the first fin and a conductive type of the second fin is different from that of the first fin. The insulators are located over the substrate, wherein the first fin and the second fin are respectively located between the insulators. The floating gate is located over the first fin, the insulators and the second fin. The control gate includes the second fin.
US11695079B2
An oxide thin film transistor includes: a gate electrode, a metal oxide active layer and a source-drain metal layer, which are on a base substrate. The metal oxide active layer includes a first metal oxide layer and a second metal oxide layer stacked on the first metal oxide layer in a direction away from the base substrate; the first metal oxide layer is a carrier transport layer; the second metal oxide layer is a carrier isolation layer; an electron transfer rate of the carrier transport layer is greater than an electron transfer rate of the carrier isolation layer. The first metal oxide layer includes a primary surface facing toward the base substrate and a primary surface away from the base substrate; the first metal oxide layer further includes a lateral surface around the primary surfaces; the second metal oxide layer covers the lateral surface of the first metal oxide layer.
US11695077B2
A transistor comprises a pair of source/drain regions having a channel there-between. A transistor gate construction is operatively proximate the channel. The channel comprises Si1-yGey, where “y” is from 0 to 0.6. At least a portion of each of the source/drain regions comprises Si1-xGex, where “x” is from 0.5 to 1. Other embodiments, including methods, are disclosed.
US11695076B2
The present disclosure provides a semiconductor device that includes a semiconductor fin disposed over a substrate, an isolation structure at least partially surrounding the fin, an epitaxial source/drain (S/D) feature disposed over the semiconductor fin, where an extended portion of the epitaxial S/D feature extends over the isolation structure, and a silicide layer disposed on the epitaxial S/D feature, where the silicide layer covers top, bottom, sidewall, front, and back surfaces of the extended portion of the S/D feature.
US11695074B2
There are provided a semiconductor device, a method of manufacturing the same, and an electronic device including the device. According to an embodiment, the semiconductor device may include a substrate, and a first device and a second device formed on the substrate. Each of the first device and the second device includes a first source/drain layer, a channel layer and a second source/drain layer stacked on the substrate in sequence, and also a gate stack surrounding a periphery of the channel layer. The channel layer of the first device and the channel layer of the second device are substantially co-planar.
US11695070B2
A power device can be structured with a power switch having multiple arrangements such that the power switch can operate as a power switch with the capability to measure properties of the power switch. An example power device can comprise a main arrangement of transistor cells and a sensor arrangement of sensor transistor cells. The main arrangement can be structured to operate as a power switch, with the transistor cells of the main arrangement having control nodes connected in parallel to receive a common control signal. The sensor arrangement of sensor transistor cells can be structured to measure one or more parameters of the main arrangement, with the sensor transistor cells having sensor control nodes connected in parallel to receive a common sensor control signal. The sensor transistor cells can have a common transistor terminal shared with a common transistor terminal of the transistor cells of the main arrangement.
US11695068B2
Methods for manufacturing double-slanted gate connected field plates that allow for the simultaneous optimization of electric field distributions between gate and drain terminals and gate and source terminals are described. A technical benefit of manufacturing the double-slanted gate connected field plate using greyscale lithography is that fabrication costs may be substantially reduced by reducing the number of process steps required to form the double-slanted gate connected field plate. The source-side slope and the drain-side slope of the double-slanted gate connected field plate may be concurrently formed with two different slopes or two different step profiles.
US11695063B2
In a method for manufacturing a semiconductor device, an isolation insulating layer is formed over a fin structure. A first portion of the fin structure is exposed from and a second portion of the fin structure is embedded in the isolation insulating layer. A dielectric layer is formed over sidewalls of the first portion of the fin structure. The first portion of the fin structure and a part of the second portion of the fin structure in a source/drain region are removed, thereby forming a trench. A source/drain epitaxial structure is formed in the trench using one of a first process or a second process. The first process comprises an enhanced epitaxial growth process having an enhanced growth rate for a preferred crystallographic facet, and the second process comprises using a modified etch process to reduce a width of the source/drain epitaxial structure.
US11695062B2
A semiconductor structure and a forming method thereof are provided. In one form, a forming method includes: providing a base, including a device region and a zero mark region; forming a zero mark trench inside the base in the zero mark region; filling the zero mark trench, to form a dielectric layer; forming a fin mask material layer covering the base and the dielectric layer; forming a mandrel layer on the fin mask material layer above the dielectric layer and the base in the device region, where the mandrel layer covers a top portion of the dielectric layer; forming a mask spacer on a side wall of the mandrel layer; removing the mandrel layer; etching the fin mask material layer by using the mask spacer as a mask after the mandrel layer is removed, to form a fin mask layer; and etching a partial thickness of the base using the fin mask layer as a mask, where the remaining base after etching is used as a substrate, and a protrusion located over the substrate in the device region is used as a fin, and etching a partial thickness of the dielectric layer during the etching of the base. In the present disclosure, after a fin is formed by filling a zero mark trench with a dielectric layer, a probability that a residue defect or a peeling defect occurs is relatively low.
US11695061B2
An integrated circuit structure includes a semiconductor substrate, insulation regions extending into the semiconductor substrate, with the insulation regions including first top surfaces and second top surfaces lower than the first top surfaces, a semiconductor fin over the first top surfaces of the insulation regions, a gate stack on a top surface and sidewalls of the semiconductor fin, and a source/drain region on a side of the gate stack. The source/drain region includes a first portion having opposite sidewalls that are substantially parallel to each other, with the first portion being lower than the first top surfaces and higher than the second top surfaces of the insulation regions, and a second portion over the first portion, with the second portion being wider than the first portion.
US11695055B2
The structure of a semiconductor device with passivation layers on active regions of FET devices and a method of fabricating the semiconductor device are disclosed. The semiconductor device includes a substrate, first and second source/drain (S/D) regions disposed on the substrate, nanostructured channel regions disposed between the first and second S/D regions, a passivation layer, and a nanosheet (NS) structure wrapped around the nanostructured channel regions. Each of the S/D regions have a stack of first and second semiconductor layers arranged in an alternating configuration and an epitaxial region disposed on the stack of first and second semiconductor layers. A first portion of the passivation layer is disposed between the epitaxial region and the stack of first and second semiconductor layers and a second portion of the passivation layer is disposed on sidewalls of the nanostructured channel regions.
US11695045B2
In a silicon carbide semiconductor device and a silicon carbide semiconductor circuit device equipped with the silicon carbide semiconductor device, a gate leak current that flows when negative voltage with respect to the potential of a source electrode is applied to the gate electrode is limited to less than 2×10−11 A and the gate leak current is limited to less than 3.7×10−6 A/m2.
US11695044B2
A semiconductor device is provided and includes a substrate and a stack on the substrate. The stack includes plural active layers that are vertically stacked and spaced apart from each other, and plural gate electrodes that are on the active layers, respectively, and vertically stacked. Each active layer includes a channel layer under a corresponding one of the gate electrodes, and a source/drain layer disposed at a side of the channel layer and electrically connected to the channel layer. The channel layer is made of a two-dimensional atomic layer of a first material.
US11695042B2
In an embodiment, a device includes: a gate structure on a channel region of a substrate; a gate mask on the gate structure, the gate mask including a first dielectric material and an impurity, a concentration of the impurity in the gate mask decreasing in a direction extending from an upper region of the gate mask to a lower region of the gate mask; a gate spacer on sidewalls of the gate mask and the gate structure, the gate spacer including the first dielectric material and the impurity, a concentration of the impurity in the gate spacer decreasing in a direction extending from an upper region of the gate spacer to a lower region of the gate spacer; and a source/drain region adjoining the gate spacer and the channel region.
US11695041B2
A semiconductor device including an active pattern on a substrate and extending lengthwise in a first direction parallel to an upper surface of the substrate; a gate structure on the active pattern, the gate structure extending in a second direction parallel to the upper surface of the substrate and crossing the first direction; channels spaced apart from each other along a third direction perpendicular to the upper surface of the substrate, each of the channels extending through the gate structure along the first direction; a source/drain layer on a portion of the active pattern adjacent to the gate structure in the first direction, the source/drain layer contacting the channels; inner spacers between the gate structure and the source/drain layer, the inner spacers contacting the source/drain layer; and channel connection portions between each of the inner spacers and the gate structure, the channel connection portions connecting the channels with each other.
US11695040B2
Methods of forming a self-aligned gate (SAG) and self-aligned source (SAD) device for high Ecrit semiconductors are presented. A dielectric layer is deposited on a high Ecrit substrate. The dielectric layer is etched to form a drift region. A refractory material is deposited on the substrate and dielectric layer. The refractory material is etched to form a gate length. Implant ionization is applied to form high-conductivity and high-critical field strength source with SAG and SAD features. The device is annealed to activate the contact regions. Alternately, a refractory material may be deposited on a high Ecrit substrate. The refractory material is etched to form a channel region. Implant ionization is applied to form high-conductivity and high Ecrit source and drain contact regions with SAG and SAD features. The refractory material is selectively removed to form the gate length and drift regions. The device is annealed to activate the contact regions.
US11695037B2
A semiconductor structure includes a substrate, a passive device and an active device over the substrate. The active device is formed in the first region of the substrate, and the passive device is formed in the second region of the substrate. The semiconductor structure further includes a passivation layer that covers the top surface of the passive device. The passivation layer has an opening that exposes the active device.
US11695030B2
A pixel-array substrate includes a semiconductor substrate, a buffer layer, and a metal annulus. The semiconductor substrate includes a first-photodiode region. A back surface of the semiconductor substrate forms a trench surrounding the first-photodiode region in a cross-sectional plane parallel to a first back-surface region of the back surface above the first-photodiode region. The buffer layer is on the back surface and has (i) a thin buffer-layer region located above the first-photodiode region and (ii) a thick buffer-layer region forming an annulus above the trench in a plane parallel to the cross-sectional plane. The metal annulus is on the buffer layer and covers the thick buffer-layer region.
US11695029B2
A method for forming a pixel includes forming, in a semiconductor substrate, a wide trench having an upper depth with respect to a planar top surface of the semiconductor substrate. The method also includes ion-implanting a floating-diffusion region between the planar top surface and a junction depth in the semiconductor substrate. In a cross-sectional plane perpendicular to the planar top surface, the floating-diffusion region has (i) an upper width between the planar top surface and the upper depth, and (ii) between the upper depth and the junction depth, a lower width that exceeds the upper width. Part of the floating-diffusion region is beneath the wide trench and between the upper depth and the junction depth.
US11695024B2
An image sensor includes a first photodiode group, a second photodiode group, a first transfer transistor group, a second transfer transistor group, a floating diffusion region of a substrate in which electric charges generated in the first photodiode group are stored, and a power supply node for applying a power supply voltage to the second photodiode group. A barrier voltage is applied to at least one transfer transistor of the second transfer transistor group. The power supply voltage allows electric charges, generated in the second photodiode group, to migrate to the power supply node, and the barrier voltage forms a potential barrier between the second photodiode group and the floating diffusion region.
US11695023B2
An apparatus includes a plurality of pixels and a plurality of microlenses. Each of the pixels has a first conversion unit and a second conversion unit surrounding the first conversion unit. The first conversion unit and the second conversion unit each have a light portion to receive light from a corresponding microlens. The first conversion unit and the second conversion unit are under the corresponding microlens. The pixels includes two or more pixels varying in an area ratio between an area of the light *portion of the first conversion unit and an area of the light portion of the second conversion unit.
US11695019B2
The semiconductor device includes a driver circuit portion including a driver circuit and a pixel portion including a pixel. The pixel includes a gate electrode layer having a light-transmitting property, a gate insulating layer, a source electrode layer and a drain electrode layer each having a light-transmitting property provided over the gate insulating layer, an oxide semiconductor layer covering top surfaces and side surfaces of the source electrode layer and the drain electrode layer and provided over the gate electrode layer with the gate insulating layer therebetween, a conductive layer provided over part of the oxide semiconductor layer and having a lower resistance than the source electrode layer and the drain electrode layer, and an oxide insulating layer in contact with part of the oxide semiconductor layer.
US11695013B2
A capacitor includes an electrode implemented in an electrode well of a substrate. The electrode well has a net N-type dopant concentration. The capacitor includes an electrode implemented in a conductive structure located above the substrate. The electrodes are separated by a dielectric layer located between the electrodes. A first tub region having a net P-type conductivity dopant concentration is located below and laterally surrounds the electrode well and a second tub region having a net N-type conductivity dopant concentration is located below and laterally surrounds the first tub region and the electrode well.
US11695012B2
On a semiconductor substrate having an SOI region and a bulk silicon region formed on its upper surface, epitaxial layers are formed in source and drain regions of a MOSFET formed in the SOI region, and no epitaxial layer is formed in source and drain regions of a MOSFET formed in the bulk silicon region. By covering the end portions of the epitaxial layers with silicon nitride films, even when diffusion layers are formed by implanting ions from above the epitaxial layers, it is possible to prevent the impurity ions from being implanted down to a lower surface of a silicon layer.
US11695011B2
Various embodiments may provide an integrated circuit layout cell. The integrated circuit layout cell may include a doped region of a first conductivity type, a doped region of a second conductivity type opposite of the first conductivity type, and a further doped region of the first conductivity type at least partially within the doped region of the second conductivity type, and continuous with the doped region of the first conductivity type. The integrated circuit cell may include a first transistor having a control terminal, a first controlled terminal, and a second controlled terminal. The first controlled terminal and the second controlled terminal of the first transistor may include terminal regions of the second conductivity type formed within the further doped region of the first conductivity type. The integrated circuit cell may also include a second transistor.
US11695009B2
A semiconductor device includes an insulating layer on a substrate, a channel region on the insulating layer, a gate structure on the insulating layer, the gate structure crossing the channel region, source/drain regions on the insulating layer, the source/drain regions being spaced apart from each other with the gate structure interposed therebetween, the channel region connecting the source/drain regions to each other, and contact plugs connected to the source/drain regions, respectively. The channel region includes a plurality of semiconductor patterns that are vertically spaced apart from each other on the insulating layer, the insulating layer includes first recess regions that are adjacent to the source/drain regions, respectively, and the contact plugs include lower portions provided into the first recess regions, respectively.
US11695005B2
Embodiments of the invention are directed to a semiconductor-based structure. A non-limiting example of the semiconductor-based structure includes a fin formed over a substrate. A tunnel is formed through the fin to define an upper fin region and a lower fin region. A gate structure is configured to wrap around a circumference of the upper fin region.
US11694999B2
An electronic device and a fabrication method thereof are provided. The electronic device includes a circuit structure layer, a package structure, an electronic element, and a plurality of function elements. The circuit structure layer has a first side and a second side opposite to the first side. The package structure is disposed on the first side of the circuit structure layer. The electronic element is embedded or encapsulated in the package structure. The function elements are disposed on the second side of the circuit structure layer. The function elements are electrically connected to the electronic element through the circuit structure layer. The electronic device provided by the disclosure exhibits borderless design or has a large function region.
US11694986B2
A composite integrated circuit (IC) device structure comprising a host chip and a chiplet. The host chip comprises a first device layer and a first metallization layer. The chiplet comprises a second device layer and a second metallization layer that is interconnected to transistors of the second device layer. A top metallization layer comprising a plurality of first level interconnect (FLI) interfaces is over the chiplet and host chip. The chiplet is embedded between a first region of the first device layer and the top metallization layer. The first region of the first device layer is interconnected to the top metallization layer by one or more conductive vias extending through the second device layer or adjacent to an edge sidewall of the chiplet.
US11694983B2
The present invention provides a test pad structure of chip, which comprises a plurality of first internal test pads, a plurality of second internal test pads, a plurality of first extended test pads, and a plurality of second extended test pads. The first internal test pads and the second internal test pads are disposed in a chip. The second internal test pads and the first internal test pads are spaced by a distance. The first extended test pads are connected with the first internal test pads. The second extended test pads are connected with the second internal test pads. The first extended test pads and the second extended test pads may increase the contact area to be contacted by probes. Signals or power are transmitted to the first internal test pads and the second internal test pads via the first extended test pads and the second extended test pads for the probes to test the chip.
US11694978B2
Semiconductor devices are provided. A semiconductor device includes an insulating layer and a conductive element in the insulating layer. The semiconductor device includes a first barrier pattern in contact with a surface of the conductive element and a surface of the insulating layer. The semiconductor device includes a second barrier pattern on the first barrier pattern. Moreover, the semiconductor device includes a metal pattern on the second barrier pattern. Related semiconductor packages are also provided.
US11694971B1
Embodiments relate to a die package featuring a sputtered metal shield to reduce Electro-Magnetic Interference (EMI). According to a particular embodiment, a die featuring a top surface exposed by surrounding Molded Underfill (MUF) material, is subjected to metal sputtering. The resulting sputtered metal shield is in direct physical and thermal contact with the die, and is in electrical contact with a substrate supporting the die (e.g., to provide shield grounding). Specific embodiments may be particularly suited to reducing the EMI of a package containing an electro-optic die, to between 3-15 dB. The conformal nature and small thickness of the sputtered metal shield desirably conserves space and reduces package footprint. Direct physical contact between the shield and the die surface exposed by the MUF, enhances thermal communication (e.g., reducing junction temperature). According to certain embodiments, the sputtered metal shield comprises a stainless steel liner, copper, and a stainless steel coating.
US11694968B2
Provided is a semiconductor architecture including a carrier substrate, alignment marks provided in the carrier substrate, the alignment marks being provided from a first surface of the carrier substrate to a second surface of the carrier substrate, a first semiconductor device provided on the first surface of the carrier substrate based on the alignment marks, a second semiconductor device provided on the second surface of the carrier substrate based on the alignment marks and aligned with the first semiconductor device.
US11694966B2
A chip package including a first semiconductor die, a support structure and a second semiconductor die is provided. The first semiconductor die includes a first dielectric layer and a plurality of conductive vias, the first dielectric layer includes a first region and a second region, the conductive vias is embedded in the first region of the first dielectric layer; a plurality of conductive pillars is disposed on and electrically connected to the conductive vias. The second semiconductor die is stacked over the support structure and the second region of the first dielectric layer; and an insulating encapsulant encapsulates the first semiconductor die, the second semiconductor die, the support structure and the conductive pillars, wherein the second semiconductor die is electrically connected to the first semiconductor die through the conductive pillars.
US11694963B2
A semiconductor device includes a semiconductor substrate having a first surface and a second surface opposing each other, a plurality of semiconductor elements disposed on the first surface in a device region, an insulating protective layer, and a connection pad. The second surface is divided into a first region overlapping the device region, and a second region surrounding the first region. The insulating protective layer is disposed on the second surface of the semiconductor substrate, and includes an edge pattern positioned in the second region. The edge pattern includes a thinner portion having a thickness smaller than a thickness of a center portion of the insulating protective layer positioned in the first region and/or an open region exposing the second surface of the semiconductor substrate. The connection pad is disposed on the center portion of the insulating protective layer and is electrically connected to the semiconductor elements.
US11694959B2
Embodiments include semiconductor packages and methods to form the semiconductor packages. A semiconductor package includes a bridge over a glass patch. The bridge is coupled to the glass patch with an adhesive layer. The semiconductor package also includes a high-density packaging (HDP) substrate over the bridge and the glass patch. The HDP substrate is conductively coupled to the glass patch with a plurality of through mold vias (TMVs). The semiconductor package further includes a plurality of dies over the HDP substrate, and a first encapsulation layer over the TMVs, the bridge, the adhesive layer, and the glass patch. The HDP substrate includes a plurality of conductive interconnects that conductively couple the dies to the bridge and glass patch. The bridge may be an embedded multi-die interconnect bridge (EMIB), where the EMIB is communicatively coupled to the dies, and the glass patch includes a plurality of through glass vias (TGVs).
US11694957B2
In a semiconductor device, a device structure is positioned over a substrate, where the device structure includes devices. A wiring structure of the semiconductor device is positioned over the substrate and coupled to at least one of the devices. The wiring structure includes at least one of programmable lines and programmable vertical interconnects, where the programmable lines extend along a top surface of the substrate and the programmable vertical interconnects extend along a vertical direction perpendicular to the top surface of the substrate. The programmable lines and the programmable vertical interconnects include a programmable material having a modifiable resistivity in that the programmable lines and the programmable vertical interconnects change between being conductive and being non-conductive in responsive to a current pattern delivered to the programmable lines and the programmable vertical interconnects.
US11694955B2
A device comprises a first dielectric layer, a first conductor, a carbon-containing etch stop layer, a second dielectric layer, and a second conductor. The first conductor has a lower portion in the first dielectric layer. The carbon-containing etch stop layer wraps an upper portion of the first conductor. The second dielectric layer is over the carbon-containing etch stop layer. An interface formed by the second dielectric layer and the carbon-containing etch stop layer is higher over the first conductor than over the first dielectric layer. The second conductor is in the second dielectric layer.
US11694954B2
A semiconductor device 1 has an electrode structure that includes source electrodes 3, a gate electrode 4, and drain electrodes 5 disposed on a semiconductor laminated structure 2 and extending in parallel to each other and in a predetermined first direction and a wiring structure that includes source wirings 9, drain wirings 10, and gate wirings 11 disposed on the electrode structure and extending in parallel to each other and in a second direction orthogonal to the first direction. The source wirings 9, the drain wirings 10, and the gate wirings 11 are electrically connected to the source electrodes 3, the drain electrodes 5, and the gate electrode 4, respectively. The semiconductor device 1 includes a conductive film 8 disposed between the gate electrode 4 and the drain wirings 10 and being electrically connected to the source electrodes 3.
US11694947B2
In some examples, a system comprises a die having multiple electrical connectors extending from a surface of the die and a lead coupled to the multiple electrical connectors. The lead comprises a first conductive member; a first non-solder metal plating stacked on the first conductive member; an electroplated layer stacked on the first non-solder metal plating; a second non-solder metal plating stacked on the electroplated layer; and a second conductive member stacked on the second non-solder metal plating, the second conductive member being thinner than the first conductive member. The system also comprises a molding to at least partially encapsulate the die and the lead.
US11694946B2
In one example, a semiconductor device includes a substrate having leads that include lead terminals, lead steps, and lead offsets extending between the lead steps so that at least some lead steps reside on different planes. A first electronic component is coupled to a first lead step side and includes a first electronic component first side, and a first electronic component second side opposite to the first electronic component first side. A second electronic component is coupled to a second lead step side, and includes a second electronic component first side, and a second electronic component second side opposite to the second electronic component first side. An encapsulant encapsulates the first electronic component, the second electronic component, and portions of the substrate. The lead terminals are exposed from a first side of the encapsulant. Other examples and related methods are also disclosed herein.
US11694935B2
A semiconductor wafer includes a semiconductor chip that includes a photonic device. The semiconductor chip includes an optical fiber attachment region in which an optical fiber alignment structure is to be fabricated. The optical fiber alignment structure is not yet fabricated in the optical fiber attachment region. The semiconductor chip includes an in-plane fiber-to-chip optical coupler positioned at an edge of the optical fiber attachment region. The in-plane fiber-to-chip optical coupler is optically connected to the photonic device. A sacrificial optical structure is optically coupled to the in-plane fiber-to-chip optical coupler. The sacrificial optical structure includes an out-of-plane optical coupler configured to receive input light from a light source external to the semiconductor chip. At least a portion of the sacrificial optical structure extends through the optical fiber attachment region.
US11694934B2
A method of milling a sample that includes a first layer formed over a second layer, where the first and second layers are different materials, the method comprising: milling the region of the sample by scanning a focused ion beam over the region a plurality of iterations in which, for each iteration, the focused ion beam removes material from the sample generating byproducts from the milled region; detecting, during the milling, the partial pressures of one or more byproducts with a residual gas analyzer positioned to have a direct line of sight to the milled region; generating, in real-time, an output detection signal from the residual gas analyzer indicative of an amount of the one or more byproducts detected; and stopping the milling based on the output signal.
US11694923B2
The present disclosure provides a method for preparing a semiconductor device with air spacer for decreasing electrical coupling. The method comprises: forming a plurality of composite pillars over a substrate, wherein the composite pillars include conductive pillars and dielectric caps over the conductive pillars; transforming a sidewall portion of the conductive pillar into a first transformed portion; removing the first transformed portion such that a width of the dielectric cap is greater than a width of a remaining portion of the conductive pillar; forming a supporting pillar between adjacent two of the plurality of composite pillars; and forming a sealing layer at least contacts a top portion of the supporting pillar and a top of the dielectric cap, and air spacers are formed between the sealing layer, the supporting pillar and the remaining portions of the conductive pillars.
US11694914B2
Systems and methods are described for integrated decomposition and scanning of a semiconducting wafer, where a single chamber is utilized for decomposition and scanning of the wafer of interest.
US11694913B2
A processing system is provided, including a vacuum enclosure having a plurality of process windows and a continuous track positioned therein; a plurality of processing chambers attached sidewalls of the vacuum enclosures, each processing chamber about one of the process windows; a loadlock attached at one end of the vacuum enclosure and having a loading track positioned therein; at least one gate valve separating the loadlock from the vacuum enclosure; a plurality of substrate carriers configured to travel on the continuous track and the loading track; at least one track exchanger positioned within the vacuum enclosure, the track exchangers movable between a first position, wherein substrate carriers are made to continuously move on the continuous track, and a second position wherein the substrate carriers are made to transfer between the continuous track and the loading track.
US11694908B2
Exemplary semiconductor processing chambers may include a gasbox including a first plate having a first surface and a second surface opposite to the first surface. The first plate of the gasbox may define a central aperture that extends from the first surface to the second surface. The first plate may define an annular recess in the second surface. The first plate may define a plurality of apertures extending from the first surface to the annular recess in the second surface. The gasbox may include a second plate characterized by an annular shape. The second plate may be coupled with the first plate at the annular recess to define a first plenum within the first plate.
US11694883B2
A sample support is a sample support for sample ionization, including: a substrate formed with a plurality of through holes opening to a first surface and a second surface on a side opposite to the first surface; a conductive layer provided not to block the through hole in the first surface; and a frame body provided in a peripheral portion of the substrate to surround an ionization region in which a sample is ionized when viewed in a thickness direction of the substrate, in which a marker for recognizing a position in the ionization region is provided in the frame body.
US11694877B2
Provided is a negative ion irradiation device in which an object is irradiated with a negative ion. The device includes a chamber that allows the negative ion to be generated therein, a gas supply unit that supplies a gas which is a raw material for the negative ion, a plasma generating portion that generates plasma, a voltage applying unit that applies a voltage to the object, a control unit that performs control of the gas supply unit, the plasma generating portion, and the voltage applying unit. The control unit controls the gas supply unit to supply the gas into the chamber, controls the plasma generating portion to generate the plasma in the chamber and to generate the negative ion by stopping the generation of the plasma, and controls the voltage applying unit to start voltage application during plasma generation and to continue voltage application after plasma generation stop.
US11694868B2
According to one aspect of the present invention, a multi-beam image acquisition apparatus, includes: an objective lens configured to image multiple primary electron beams on a substrate by using the multiple primary electron beams; a separator configured to have two or more electrodes for forming an electric field and two or more magnetic poles for forming a magnetic field and configured to separate multiple secondary electron beams emitted due to the substrate being irradiated with the multiple primary electron beams from trajectories of the multiple primary electron beams by the electric field and the magnetic field formed; a deflector configured to deflect the multiple secondary electron beams separated; a lens arranged between the objective lens and the deflector and configured to image the multiple secondary electron beams at a deflection point of the deflector; and a detector configured to detect the deflected multiple secondary electron beams.
US11694852B2
An electrode (1), the electrode (1) comprises a substrate (4, 5) on which is located a porous layer of a conducting or semi-conducting oxide (6) and having located thereon Ferredoxin NADP Reductase (FNR) (3). The electrode (1) can be used to drive organic synthesis via nicotinamide cofactor regeneration.
US11694841B2
A current transformer having a body having an upper half and a lower half hingedly connected to the upper half, a pair of ferrite cores located within one of the upper half and the lower half of the body, the pair of ferrite cores defining a gap formed between each ferrite core of the pair of ferrite cores, and a sensor located within the gap formed between each ferrite core of the pair of ferrite cores.
US11694833B2
Disclosed herein is an inductor component that includes a magnetic core having magnetic thin ribbons laminated in a z-direction, a first coil conductor inserted into first and second through holes penetrating the magnetic core in the z-direction, and a second coil conductor inserted into third and fourth through holes penetrating the magnetic core in the z-direction. Each of the magnetic thin ribbons is divided into a plurality of small pieces by net-shaped cracks. A periphery of each of the first to fourth through holes is surrounded by the plurality of small pieces without being circumferentially divided by a slit having a size larger than the crack.
US11694832B2
A transformer includes a closed loop core having a first leg and a second leg. The transformer also includes a first primary winding surrounding the first and second legs, a second primary winding surrounding the first and second legs, and first and second secondary windings surrounding the first and second legs, respectively, and disposed between the first and second primary windings. A first turn of the first and second secondary windings are disposed on a first interlayer winding layer, and other turns of the first and second secondary windings are disposed on a first layer that is further from the first primary winding than the first interlayer winding layer.
US11694831B2
A haptic actuator may include a housing that includes first and second shells coupled together. The first shell may include a first body and first terminals extending outwardly therefrom. The second shell may include a second body and second terminals extending outwardly therefrom with each of the second terminals being secured with a respective one of the first terminals defining pairs of first and second secured-together terminals. The haptic actuator may also include at least one coil carried by the housing and a field member movable within the housing responsive to the at least one coil. A respective flexure may be between adjacent end portions of the housing and the field member.
US11694819B1
An electromagnetic wave-trapping device including two surfaces, each disposed in a plane, the two surfaces disposed at a first angle with respect to one another to form an opening, one of the two surfaces is configured to be orientated such that an incident electromagnetic ray through the opening, is disposed at a second angle with respect to the one of the two surfaces.
US11694810B2
There is provided a method comprising: mapping patient-specific medications (mapped to active ingredients) and patient-specific parameters of a patient to a mapping data-structure that maps between medications, predicted medical outcomes, and patient parameters, each relationship-mapping includes one medication (active ingredient), one predicted medical outcome, one patient parameter, one risk score, a predicted medical outcome(s) denoting a medication induced event of a corresponding mapped medication, the patient parameter(s) including: a medication influencing factor (for an active ingredient, selected from primary parameters affecting the corresponding mapped medication: blood level, absorption, distribution, metabolism, elimination) directly affecting the corresponding mapped medication which affects the medication induced event, and/or an event influencing factor directly affecting the medication induced event, and computing an aggregated risk score for each respective predicted medical outcome by aggregating the risk scores of the identified relationship-mappings including each respective predicted medical outcome.
US11694789B2
A medical examination support apparatus includes: a display screen generation unit that generates a display screen for displaying a medical examination process and identification information of a patient so as to be associated with each other for each of a plurality of patients; and an unread management unit that displays a status, which includes information indicating that the medical examination process has been unread, or information indicating that the medical examination process has been read, or both the pieces of information, on the display screen. In a case where there is a revision in the medical examination process whose status is unread or read, the unread management unit displays the status of the medical examination process, which has been revised, in a display mode different from display modes indicating unread and read.
US11694788B2
Systems and methods may use healthcare protocols for use with distributed ledger technology. The healthcare protocols may be used to, among other things, classify event data items as distributed ledger data items such that record of such classified event data items may be stored in a distributed ledger. Further, the healthcare protocols may be modified over time, and record of such modifications may also be stored in a distributed ledger.
US11694785B2
A method of administering insulin includes receiving scheduled glucose time intervals and obtaining glucose data of a patient that includes glucose measurements, glucose times, and insulin dosages previously administered by the patient. The method also includes applying a set of filters to identify which of the glucose measurements associated with at least one of the scheduled time intervals are usable and which of the glucose measurements associated with the at least one scheduled time interval are unusable. The method also includes aggregating the glucose measurements associated with the at least one scheduled time interval identified as usable to determine a representative aggregate glucose measurement and determining a next recommended insulin dosage for the patient based on the representative aggregate glucose measurement and the insulin dosages previously administered by the patient.
US11694784B2
Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device capable of delivering fluid to a patient involves obtaining, by a control system associated with the infusion device, an input meal indication, obtaining historical data for the patient associated with the input meal indication, determining an estimated carbohydrate amount corresponding to the input meal indication based at least in part on the historical data, determining a bolus dosage of the insulin based at least in part on the estimated carbohydrate amount, and operating an actuation arrangement of the infusion device to deliver the bolus dosage of the insulin to the patient.
US11694782B2
Provided herein are various apparatuses, systems, and methods for improving the efficiency of medication distribution within a healthcare facility. In particular, embodiments may provide for dispensing medications needed and medications anticipated to be needed to an authorized medical person for administration to a patient in a healthcare facility. Methods may include receiving an indication of one or more unit dose medications anticipated to be needed by a patient; retrieving the one or more unit dose medications from a unit storage device; loading the one or more unit dose medications onto a transport device; transporting the one or more unit dose medications from the unit storage device to a location proximate the patient; and transferring the one or more unit dose medications from the transport device to a staging area at the location proximate the patient.
US11694779B2
Systems and methods for providing test results include receiving a request from a user computing device for historical test result data associated with a patient for a test type at a computing system. In response to receiving the request, the computing system accesses the historical test result data for the patient and test type, which includes a test result value and a test range. The computing system generates graphical data, in part, by normalizing the historical test result data by fitting the test range to a chart subrange corresponding to a predetermined range for the test result (e.g., a normal outcome of the test). The computing system then transmits the graphical data to the user computing device for rendering and display at the user computing device.
US11694772B2
Aspects relate to a portable device that may be used to identify a critical intensity and an anaerobic work capacity of an individual. The device may utilize muscle oxygen sensor data, speed data, or power data. The device may utilize data from multiple exercise sessions, or may utilize data from a single exercise session. The device may additionally estimate a critical intensity from a previous race time input from a user.
US11694770B2
Volatile organic compounds classification by receiving test data associated with detecting volatile organic compounds (VOCs), analyzing the test data according to a set of data features associated with known VOCs, determining a match between each feature of the test data and a corresponding feature of the set of data features, yielding a set of matches, defining a first degree of anomaly for the test data according to the set of matches, and classifying the test data according to the first degree of anomaly.
US11694766B2
The present invention relates to a method for determining one or more intrinsic properties of a DNA component from a plurality of measurements obtained over a time period from a cell culture, with each cell comprising the DNA component, wherein the DNA component is involved in transcription of one or more target signals, wherein the plurality of measurements comprises measurements relating to the density of the cell culture over the time period and measurements relating to the amount of the one or more target signals in the cell culture over the time period.
US11694765B2
Described herein is a discovery Platform Technology for analyzing a drug-induced toxicity condition, such as cardiotoxicity via model building.
US11694758B2
Exemplary methods, apparatuses, and systems include receiving a plurality of read operations. The read operations are divided into a current set of a sequence of read operations and one or more other sets. The size of the current set is a first number of read operations. An aggressor read operation is selected from the current set. A data integrity scan is performed on a victim of the aggressor and a first indicator of data integrity is determined based on the first data integrity scan. A size of a subsequent set of read operations is set to a second number, which less than the first number, based on the indicator of data integrity.
US11694753B2
Memory might include a controller configured to cause the memory to capacitively couple a first voltage level from a voltage node to a node of a sense circuit, selectively discharge the node of the sense circuit through a memory cell, measure a current demand of the voltage node while selectively discharging the node of the sense circuit through the memory cell, determine a second voltage level in response to the measured current demand, isolate the node of the sense circuit from the memory cell, capacitively couple the second voltage level from the voltage node to the node of the sense circuit, and determine a data state of the memory cell in response to a voltage level of the node of the sense circuit while capacitively coupling the second voltage level to the node of the sense circuit.
US11694744B2
A non-volatile memory device includes a plurality of memory cells arranged in a matrix, a plurality of word lines extended in a row direction, and a plurality of bit lines extended in a column direction. Each of the memory cells is coupled to one of the word lines and one of the bit lines. The memory device further includes a word-line control circuit coupled to and configured to control the word lines, a first bit-line control circuit configured to control the bit lines and sense the memory cells in a digital mode, and a second bit-line control circuit configured to bias the bit lines and sense the memory cells in an analog mode. The first bit-line control circuit is coupled to a first end of each of the bit lines. The second bit-line control circuit is coupled to a second end of each of the bit lines.
US11694739B2
A memory controller interfaces with a random access memory over a memory channel. A refresh control circuit monitors an activate counter which counts a rolling number of activate commands sent over the memory channel to a memory region of the memory. In response to the activate counter being above an intermediate management threshold value, the refresh control circuit only issue a refresh management (RFM) command if there is no REF command currently held at the refresh command circuit for the memory region.
US11694736B2
Apparatuses and methods for setting a duty cycler adjuster for improving clock duty cycle are disclosed. The duty cycle adjuster may be adjusted by different amounts, at least one smaller than another. Determining when to use the smaller adjustment may be based on duty cycle results. A duty cycle monitor may have an offset. A duty cycle code for the duty cycle adjuster may be set to an intermediate value of a duty cycle monitor offset. The duty cycle monitor offset may be determined by identifying duty cycle codes for an upper and for a lower boundary of the duty cycle monitor offset.
US11694735B2
A memory controller for accessing a memory, comprises a holding circuit which holds a plurality of read or write access requests from a bus master, a read/write control circuit which selects one of the access requests in the holding circuit and issues a read command or a write command; and an active control circuit which selects the access request held in the holding circuit and issues an active command, wherein the active control circuit includes a generation circuit that generates number of activated read commands and number of activated write commands, and a selection circuit that, when the number of activated read commands is not less a threshold, issues the active command of an read access, and when the number of activated write commands is not less than the threshold, issues the active command of a write access.
US11694734B2
Apparatuses and methods for setting a duty cycler adjuster for improving clock duty cycle are disclosed. The duty cycle adjuster may be adjusted by different amounts, at least one smaller than another. Determining when to use the smaller adjustment may be based on duty cycle results. A duty cycle monitor may have an offset. A duty cycle code for the duty cycle adjuster may be set to an intermediate value of a duty cycle monitor offset. The duty cycle monitor offset may be determined by identifying duty cycle codes for an upper and for a lower boundary of the duty cycle monitor offset.
US11694731B2
In one embodiment, a semiconductor storage device includes a plurality of memory chips, at least one of the memory chips including a first controller configured to be shifted to a wait state of generating a peak current, before generating the peak current in accordance with a command. The device further includes a control chip including a second controller configured to search a state of the first controller and control, based on a result of searching the state of the first controller, whether or not to issue a cancel instruction for the wait state to the first controller that has been shifted to the wait state.
US11694727B2
Memory devices might include an array of memory cells, a plurality of access lines, and a heater. The array of memory cells might include a plurality of strings of series-connected memory cells. Each access line of the plurality of access lines might be connected to a control gate of a respective memory cell of each string of series-connected memory cells of the plurality of strings of series-connected memory cells. The heater might be adjacent to an end of each access line of the plurality of access lines.
US11694723B2
A screen is manipulated to display content whose reflection is not captured by a sensor. In an embodiment, the screen inserts a black frame between screen content frames, displaying the black frame during a particular time. A sensor captures a video frame during the particular time. The video frame does not include a screen reflection and is considered a clean frame. In another embodiment, the screen displays screen content with a particular polarization during a particular time. A sensor captures a video frame with another polarization during the same time. The polarizations are selected such that the sensor is unable to capture screen reflections. The video frame is considered a clean frame. The clean frame is used to generate a masking frame, which is applied to target video frames to remove screen reflection. A modified target video, including the reflection-removed target video frame, and/or the clean frame itself, is generated.
US11694710B2
Audio processing systems and methods include an audio sensor array configured to receive a multichannel audio input and generate a corresponding multichannel audio signal and target-speech detection logic and an automatic speech recognition engine or VoIP application. An audio processing device includes a target speech enhancement engine configured to analyze a multichannel audio input signal and generate a plurality of enhanced target streams, a multi-stream target-speech detection generator comprising a plurality of target-speech detector engines each configured to determine a probability of detecting a specific target-speech of interest in the stream, wherein the multi-stream target-speech detection generator is configured to determine a plurality of weights associated with the enhanced target streams, and a fusion subsystem configured to apply the plurality of weights to the enhanced target streams to generate an enhancement output signal.
US11694703B2
An audio signal encoding and decoding method using a learning model, a training method of the learning model, and an encoder and decoder that perform the method, are disclosed. The audio signal decoding method may include extracting a first residual signal and a first linear prediction coefficient by decoding a bitstream received from an encoder, generating a first audio signal from the first residual signal using the first linear prediction coefficient, generating a second linear prediction coefficients and a second residual signal from the first audio signal, obtaining a third linear prediction coefficient by inputting the second linear prediction coefficient into a trained learning model, and generating a second audio signal from the second residual signal using the third linear prediction coefficient.
US11694699B2
There is provided mechanisms for frame loss concealment. A method is performed by a receiving entity. The method comprises adding, in association with constructing a substitution frame for a lost frame, a noise component to the substitution frame. The noise component has a frequency characteristic corresponding to a low-resolution spectral representation of a signal in a previously received frame.
US11694698B2
In a reliable multi-cast, a concealment scheme may be applied to recover or conceal lost or otherwise corrupted packets of audio information for one channel based on the audio information of other channels in the reliable multi-cast. The concealment scheme may employ correction factors for channels derived from the channel relationships.
US11694693B2
Methods and systems for processing audio signals containing speech data are disclosed. Biometric data associated with at least one speaker are extracted from an audio input. A correspondence is determined between the extracted biometric data and stored biometric data associated with a consenting user profile, where a consenting user profile is a user profile indicates consent to store biometric data. If no correspondence is determined, the speech data is discarded, optionally after having been processed.
US11694689B2
A device, such as Network Microphone Device or a playback device, detecting an event associated with the device or a system comprising the device. In response, an input detection window is opened for a given time period. During the given time period the device is arranged to receive an input sound data stream representing sound detected by a microphone. The input sound data stream is analyzed for a plurality of keywords and/or a wake-word for a Voice Assistant Service (VAS) and, based on the analysis, it is determined that the input sound data stream includes voice input data comprising a keyword or a wake-word for a VAS. In response, the device takes appropriate action such as causing the media playback system to perform a command corresponding to the keyword or sending at least part of the input sound data stream to the VAS.
US11694686B2
A method comprises receiving at least one natural language input, converting the at least one natural language input to a graphical input, retrieving relationship data from a graph database based at least in part on the graphical input, and generating at least one natural language response of a virtual assistant to the at least one natural language input based at least in part on the relationship data from the graph database. At least the generating is performed using one or more machine learning models.
US11694669B2
A method for manufacturing a cellular core for an acoustic panel is provided. The cellular core includes at least one plurality of acoustic cells and a plurality of de-icing channels that extend longitudinally, each de-icing channel being transversely interposed between two successive cells, and the de-icing channels being adapted to channel a de-icing fluid. A manufacturing step includes producing the acoustic cells and the de-icing channels as a single piece such that the cellular core manufactured during the manufacturing step forms a monolithic part.
US11694663B2
An effect addition device includes at least one processor that executes a time domain convolution process of convolving a first time domain data part of impulse response of sound effects with a time domain data on an original sound, a frequency domain convolution process of convoluting a second time domain data part of the impulse response data with the time domain data on the original sound, a convolution extension process of extending a convolved state(s) of an output signal(s) resulting from the time domain convolution process and/or the frequency domain convolution process by arithmetic processing which corresponds to an all-pass filter and/or arithmetic processing which corresponds to a comb filter, and a synthesized sound effect addition process of adding a sound effect which is synthesized by execution of the time domain convolution process, the frequency domain convolution process and the convolution extension process to the original sound.
US11694659B2
A display apparatus includes a display screen, and a controller that causes the display screen to display a composite image in which a first image acquired by imaging a space by a camera and a second image representing at least one type of aerosol existing in the space are combined. The position of the at least one type of aerosol as seen in a depth direction in the first image is reflected in the second image.
US11694653B2
The present invention provides a motion content based dynamic frame rate conversion method for displaying a video by a display device, comprising: detecting motion content of the video and generating a control signal for controlling a display color depth based on the motion detection result. The video is displayed with a lower color depth at a higher frame rate than a standard configuration of the display device if the motion detection result indicates that the video contains appreciable amount of motion content; and the video is displayed with a higher color depth at a lower frame rate than the standard configuration of the display device if the motion detection result indicates that the video is relatively static. The present invention can facilitate the display device to dynamically convert its display output formats according to motion content of the video to further optimize the display quality.
US11694651B2
Technology for a display source controller is described. The display source controller can receive display pixel data from a display source. The display source controller can convert the display pixel data to display symbol data that includes a plurality of 32-bit double words (DWords). The display source controller can divide the display symbol data that includes the plurality of 32-bit DWords for a number of unidirectional serial data channels. The display source controller can process, for each unidirectional serial data channel, the display symbol data at a 32-bit DWord granularity level. The display source controller can send the display symbol data for each of the unidirectional serial data channels over a physical serial link to a display panel.
US11694648B2
A display device capable of performing image processing is provided. A memory node is provided in each pixel included in the display device. An intended correction data is held in the memory node. The correction data is calculated by an external device and written into each pixel. The correction data is added to image data by capacitive coupling, and the resulting data is supplied to a display element. Thus, the display element can display a corrected image. The correction enables image upconversion, for example.
US11694647B2
According to one embodiment, a display device includes a first substrate, a second substrate including a common electrode, and a display function layer which is partly switched between a transparent state and a scattering state. The first substrate includes a first scanning line, a first signal line, an insulating layer, a first switching element, and a first pixel electrode. The first signal line includes a first coupling portion and a first line portion. The first scanning line intersects the first coupling portion and is provided in a same layer as the first line portion. The insulating layer is interposed between the first coupling portion and the first scanning line.
US11694642B2
The present application provides a method for driving a mini-LED backlight module. The method includes dividing the mini-LED backlight module into a plurality of partitions along an extending direction of a data line, dividing a period of each frame used in the mini-LED backlight module into an adjusting sub-field, and adjusting durations of a bright sub-field or a dark sub-field of the adjusting sub-field corresponding to different partitions based on different gray modes. In such a way, the brightness of each partition falls within a configured brightness threshold range.
US11694638B1
According to an aspect of the present disclosure, a display device includes a display panel in which a plurality of sub-pixels is disposed. Also, the display device includes a data driver configured to supply a plurality of data voltages to the plurality of sub-pixels through a plurality of data lines. Further, the display device includes a gate driver configured to supply a plurality of gate signals to the plurality of sub-pixels through a plurality of gate lines. Each of the plurality of sub-pixels includes a light emitting diode, a driving transistor, and a variable resistance circuit disposed in series between a low-potential voltage terminal and a high-potential voltage terminal. When each of the plurality of sub-pixels implements a low grayscale, the variable resistance circuit increases a resistance between the high-potential voltage terminal and the driving transistor. Thus, a low grayscale can be normally implemented.
US11694637B2
A display device according to an embodiment includes a plurality of pixel blocks including a plurality of pixels connected to a plurality of scan lines and a plurality of data lines, respectively, and at least one active circuit; and a data driver supplying a data voltage to the plurality of data lines in a light emitting mode and supplying a neural network input signal to the plurality of data lines in an artificial neural network mode. In the artificial neural network mode, a scan signal is supplied to a scan line connected to at least one pixel block among the plurality of pixel blocks, and the neural network input signal is supplied to a data line connected to the at least one pixel block.
US11694636B2
A sensing circuit includes a first input selecting circuit connected to a first sensing line and a second sensing line, a first path setting circuit that sets a path of a first sensing signal received from the first sensing line or a path of a second sensing signal received from the second sensing line, a second path setting circuit that sets a path of a sensing reference voltage, a first switch matrix connected to the first path setting circuit and the second path setting circuit, a first mode setting circuit connected to a first output terminal of the first switch matrix, a first common sensing amplifier connected to the first mode setting circuit, a second mode setting circuit connected to a second output terminal of the first switch matrix, and a second common sensing amplifier connected to the second mode setting circuit.
US11694632B2
A power voltage generator includes a charge pump and a regulator. The charge pump generates a charge pumping voltage. The charge pumping voltage has a headroom margin which is automatically set. The charge pumping voltage is varied based on a target voltage. The regulator generates a power voltage based on the charge pumping voltage.
US11694629B2
A gate driver includes a plurality of gate stages. Each of the plurality of gate stages includes a carry generating circuit outputting a second carry signal having a phase which is later than a phase of a first carry signal, on the basis of a first clock signal and a second clock signal having different phases and a scan generating circuit outputting a scan signal having a phase which differs from phases of the first and second carry signals, on the basis of the first clock signal, the second clock signal, and the first carry signal. Each of the first clock signal, the second clock signal, the first carry signal, and the second carry signal may be a P-type pulse, and the scan signal may be an N-type pulse.
US11694624B2
A pixel compensation device includes a controller and at least one external compensation circuit. In the external compensation circuit, a first input circuit is configured to transmit a first voltage to a first terminal of a driving sub-circuit in a initialization phase, perform blanking in a pre-storage phase, and transmit a threshold compensation voltage to the first terminal in the data compensation writing phase; a second input circuit is configured to transmit a second voltage to a control terminal of the driving sub-circuit in the initialization phase and the pre-storage phase, so that a voltage of the first terminal changes from the first voltage to the threshold compensation voltage in the pre-storage phase; a sensing circuit is configured to sense the threshold compensation voltage in the data compensation writing phase; and the controller is configured to transmit a data voltage to the control terminal in the data compensation writing phase.
US11694623B2
A display device may include a display unit, a signal controller, and a sensing unit. The display unit may include pixels. The signal controller may select a first pixel set from the pixel according to ages of the pixels determined based on an image signal. The sensing unit may be electrically connected to each of the display unit and the signal controller and may sense deterioration information of one or more pixels included in the first pixel set for a vertical blank period in which the display unit displays no image.
US11694620B2
A display device is provided including a substrate. The substrate includes a display region that includes a plurality of pixels and a sensing region provided in at least one region of the display region. A circuit element layer is disposed on the substrate, the circuit element layer includes a plurality of conductive layers. A light emitting element layer is provided on the circuit element layer. The light emitting element layer includes a plurality of light emitting elements. A sensor layer is disposed on the substrate. The sensor layer includes a plurality of photo sensor units each including sensor pixels. The photo sensor units are arranged in an irregular pattern in the sensing region.
US11694619B2
A display apparatus includes a substrate which includes a first pixel area and a second pixel area. A third pixel area is spaced apart from the second pixel area. A notch peripheral area is adjacent to the first, second and third pixel areas. A plurality of pixels are provided in the first, second and third pixel areas. A first scan line is disposed on the substrate. The first scan line includes a first portion disposed in the second pixel area, a second portion disposed in the third pixel area, and a third portion which connects the first portion to the second portion. The third portion is disposed in the notch peripheral area. A second scan line is disposed on the substrate in the first pixel area. A surface area of the first scan line is from about 90% to about 110% of a surface area of the second scan line.
US11694615B2
What is disclosed are systems and methods for compensating for display OLED degradation. Correction factors k for OLED degradation of each sub-pixel is modelled and tracked based on grey level, temperature, and time, and used to correct image data provided to an OLED display.
US11694610B2
A display device can include a display panel having an active area including a plurality of subpixels, at least one hole area surrounded by the active area, a boundary area disposed between the at least one hole area and the active area, a first gate line on the active area and the boundary area, and supplying a scan signal to a first group subpixels, a second gate line disposed on the active area and the boundary area and supplying a EM signal to the first group subpixels, a first data line disposed on the active area and the boundary area and supplying a data voltage to a second group of subpixels excluding a green subpixel, and a second data line disposed on the active area and the boundary area and supplying the data voltage to a third group subpixels including a green subpixel.
US11694606B2
A display device with sensing element includes a substrate having a disposing surface, a plurality of display elements, at least one sensing element, and at least one lighting adjustment element. The display elements are disposed above the disposing surface to present an image. The at least one sensing element disposed above the disposing surface to sense a light brightness projected toward either side of the substrate. The at least one light adjustment element is in signal transmittable connection with the display elements and the at least one sensing element. The at least one light adjustment element adjusts a plurality of control signals inputted into the display elements to determine a contrast of the image.
US11694605B2
A display system includes (i) a plurality of picture elements supported on a single semiconductor substrate and (ii) a backplane including electronic circuitry supported thereon and electronically connected with the picture elements. Each picture element includes a light steering optical element and an array of light emitting elements. The array of light emitting elements includes a first set, a second set, and a third set of inorganic LEDs that (i) are monolithically integrated on the single semiconductor substrate and (ii) emit, respectively, light at a first, a second, and a third wavelength, which are mutually distinct. The light steering optical element is configured for steering the light from the first set, second set, and third set of LEDs in a predetermined direction. The electronic circuitry is configured for individually driving each light emitting element of the array of light emitting elements.
US11694597B2
The pixel driving circuit includes a current control sub-circuit configured to output a gray scale current signal to an element to be driven, and a gating sub-circuit. The gating sub-circuit is coupled to a scan signal terminal, a reset signal terminal, a gating data signal terminal and a pulse voltage signal terminal; the gating sub-circuit is configured to drive the element to be driven to continuously emit light under the control of a scan signal from the scan signal terminal and a gating data signal from the gating data signal terminal, and to drive the element to be driven to intermittently emit light under the control of a reset signal from the reset signal terminal, the gating data signal from the gating data signal terminal, and a pulse voltage signal from the pulse voltage signal terminal.
US11694595B2
Systems and methods which provide a player zero, one or more awards based on a variable quantity of symbol display positions associated with one or more reels.
US11694592B2
Systems and methods for a multi-primary color system for display. A multi-primary color system increases the number of primary colors available in a color system and color system equipment. Increasing the number of primary colors reduces metameric errors from viewer to viewer. One embodiment of the multi-primary color system includes Red, Green, Blue, Cyan, Yellow, and Magenta primaries. The systems of the present invention maintain compatibility with existing color systems and equipment and provide systems for backwards compatibility with older color systems.
US11694588B2
Disclosed are a low power driving system and timing controller for a display device. The low power driving system for a display device may include a timing controller configured to transmit a packet to which one of first option information corresponding to a static pattern or second option information corresponding to a dynamic pattern is applied, and a source driver configured to receive the packet and to perform a low power mode corresponding to the static pattern based on the first option information or adaptive charge sharing corresponding to the dynamic pattern based on the second option information.
US11694585B2
A display apparatus includes: an irradiation section to be irradiated with image light while being driven to cause a three-dimensional image be displayed based on reflected image light in a manner visible to a user using an afterimage effect; a driver that drives the irradiated section; circuitry that acquires two-dimensional image data generated according to at least one of an angle or a position of the irradiation section being driven; and an irradiation device that irradiates the irradiated section with the image light based on the two-dimensional image data that is acquired.
US11694582B2
An electronic shelf label that comprises: a display unit that is arranged to display an image, and an interaction interface which is arranged separate from the display unit, wherein the interaction interface is realized as touch sensitive unit that provides a touch-triggered signal, and a processing unit that is connected to the touch sensitive unit and is arranged to process the touch-triggered signal.
US11694575B2
Systems and methods for utilizing laboratory equipment in a hybrid reality environment or augmented virtual reality environment, are contemplated herein and include: at least one piece of laboratory equipment having at least one feature, wherein the at least one piece of laboratory equipment is tracked; a tracking module for tracking a position and an orientation of the at least one piece of tracked laboratory equipment; a virtual model, stored in a memory, comprising at least one 3-D virtual representation of the at least one feature of the at least one piece of laboratory equipment; and an experimentation module. A piece of laboratory equipment for use in a hybrid reality environment or augmented virtual reality environment is also included that comprises at least one piece of laboratory equipment having at least one feature, wherein the at least one piece of laboratory equipment is tracked; at least one marker that is coupled with the at least one piece of laboratory equipment; and a tracking module for tracking a position and an orientation of the at least one piece of tracked laboratory equipment, wherein the tracking module accesses the at least one marker.
US11694571B2
An information processing system comprises a sensor configured to sense a first posture that a user is taking; a storage configured to store posture data about a posture of a person; and a controller configured to create advice for the user regarding a negative influence on a body of the user, based on sensor data acquired from the sensor and the posture data.
US11694549B2
Disclosed herein are an apparatus and method for providing a customized traffic guidance service. The method may include acquiring data about one or more nearby objects, detecting surrounding traffic conditions based on the data about the nearby objects, determining whether to provide a customized traffic guidance service, selecting one or more target objects to which the customized traffic guidance service is to be provided and guidance information to be provided to each of the target objects, generating a customized traffic guidance message for the selected guidance information, and transmitting the customized traffic guidance message to the corresponding target object.
US11694541B2
A load control system may include devices for performing communications for controlling an amount of power provided to an electrical load. The devices may include load control devices that may communicate by transmitting digital messages. A user device having an adjustable wireless communication range may be used for discovering devices, configuring devices, and/or diagnosing devices in the load control system. The user device may detect whether devices are within an established wireless communication range of one another for performing communications. The user device may detect digital messages transmitted from a device and/or digital messages received at a device to determine whether the digital messages are correctly communicated in the load control system. The user device may provide an indication to a user indicating whether a digital message is correctly transmitted or received by a device in the load control system.
US11694533B2
A computing system and/or a method may be provided for using a risk assessment to provide a notification. The computing system may comprise a processor. The processor may be configured to perform the method. A biomarker may be received for a patient from a sensing system. A data collection that includes pre-surgical data may be received for a patient. A probability of a patient outcome due to a surgery performed on the patient may be determined using the biomarker and the data collection. A notification may be sent to a user. The notification may indicate that the probability of the surgical complication may exceed a threshold.
US11694532B2
A photoelectric smoke detector (14) connected to a signal line (12-1) drawn into a warning area from a receiver (10) transmits a fire signal including identification information of smoke caused in detection zones Z1 and Z2. In the detection zones, a sensor (18) for sensing a change of physical phenomenon other than smoke involved in fire is provided, and the sensor (18) is connected to the signal line (12-1) via a relay device (16). The sensor (18) is at least one of a CO2 sensor, a CO sensor, a fire sensor, and a heat sensor. A fire alarm control unit (48) of the receiver (10) causes an alarm to be given, when determining the identification information of the smoke by the photoelectric smoke detector (14) and a sensing value by at least one of the CO2 sensor, the CO sensor, the fire sensor, and the heat sensor.
US11694530B2
Embodiments of this application provide a fire-fighting switch device and a fire-fighting system, which are applied to the field of fire-fighting. The fire-fighting switch device includes a plurality of fire detection switch units, where the fire detection switch unit includes one or more fire detection switches, the one or more fire detection switches form at least one switch path, the fire detection switch is configured to turn on when a fire is detected, and any one of the switch paths is configured to transmit a voltage signal to a fire-extinguishing device when all of the fire detection switches on the switch path are turned on. In this solution, when a fire is detected by one fire detection switch unit, the fire-extinguishing device can be controlled to extinguish the fire provided that all fire detection switches on one switch path in the fire detection switch unit are turned on.
US11694525B2
A life safety device includes a housing and a light transmission device disposed within the housing. A first end of the light transmission device is visible at the exterior of the housing. The life safety device additionally includes a transmitter for generating a light. The transmitter is positioned within the housing adjacent the light transmission device. A receiver measures ambient light around the life safety device. The receiver is positioned within the housing adjacent the light transmission device.
US11694510B2
Systems, methods, devices, and computer readable media for monitoring card game activities at gaming tables, such as for example, counting the number of card hands at gaming tables. The devices may include a sensor array network to detect game events; a microcontroller for running logic level code for checking sensors of the sensors of the sensor array network for pre-defined thresholds defining the detected game events and in response generating game event data; and a connection cable for coupling to a server device for transmitting the game event data. Systems may connect client hardware devices with sensors for monitoring card game activities. A game monitoring server may collect, process and aggregate hand event data received from the client hardware devices to generate hand count data for gaming tables. A front end interface device may receive notifications relating to hand count data for provision to end user systems.
US11694507B2
Various embodiments of gaming systems, gaming devices, and methods of the present disclosure provide one or more alternative wagering propositions to a player when the player's credit balance is less than (or, in certain embodiments, less than or equal to) a designated wager amount. If the player accepts one of the alternative wager propositions, the player risks an amount of the player's remaining credit balance for a chance to win an alternative award. If the player wins the alternative award, the gaming system enables the player to play one or more plays of the wagering game at the designated wager amount. If the player does not win the alternative award, the gaming system reduces the player's credit balance by the amount risked.
US11694496B2
A smart storage locker can be used to store an individual's mobile device while the individual is at work, school or another location where mobile devices should be restricted. The smart storage locker will therefore prevent the individual from carrying his or her mobile device while in such restricted environments. In addition to storing mobile devices, the smart storage locker can also be configured to automatically detect an individual's identity when the individual's mobile device is secured within the smart storage locker. This detection can then be employed to track when the individual is present at a particular location while not having access to, and therefore not using, his or her mobile device.
US11694493B2
A method to utilize an animation feature of a vehicle lighting member includes receiving, by a controller, sensor data indicative of a vehicle condition, determining a vehicle condition type from the sensor data, generating a control signal to control the animation feature of the vehicle lighting member based on the vehicle condition type, and controlling the animation feature of the vehicle lighting member to visually illustrate the vehicle condition type.
US11694491B2
An example method for outputting a PID filter list (PFL) includes: receiving RO data from one or more ROs that indicate particular vehicle identifying information (PVII), at least one symptom identifier, and a particular vehicle component; determining, symptom-to-parameter-identifier (PID) mapping data (MD) based on the received RO data and component-to-PID MD; determining, based on the set of available PIDs for the SOV and the symptom-to-PID MD, a PFL, wherein the PFL is associated with the PVII and the at least one symptom identifier, and wherein the PFL indicates a symptom-based subset of PIDs from the set of available PIDs for the SOV; receiving, a request sent over a communication network from a display device, wherein the request comprises the PVII and the at least one symptom identifier; and transmitting, over the communication network to the display device, a response to the request, the response comprising the PFL.
US11694488B2
A method determines damage which occurs on the vehicle in the event of an accident between a vehicle and a collision partner. The method analyzes information about an acceleration profile of the vehicle provided by an acceleration sensor. The analysis is performed as to whether the acceleration profile exhibits at least one sudden change or jump. The method generates an output signal which includes an item of information about damage which has occurred on the vehicle in the event of the accident, based on a number of changes or jumps which are identified during the analysis of the acceleration profile.
US11694473B2
An electronic circuit adapted to drive a display panel including touch sensors and fingerprint sensors is provided. The electronic circuit includes a switch circuit and a control circuit. The switch circuit includes a plurality of first switch elements and a plurality of second switch elements. The control circuit is configured to generate control signals for controlling the switch circuit, so as to control the electronic circuit to transmit the display driving signals from the first circuit to the data lines through a first part of the first switch elements in a first time interval, and control the electronic circuit to receive the fingerprint sensing signals from the fingerprint sensors of the display panel through the second switch elements in a second time interval.
US11694472B2
The embodiments of the present disclosure provide a display panel, a display device, and a method for manufacturing the display panel. The display panel comprises: a display module comprising a fingerprint recognition component; a packaging cover plate located on a light emergent side of the display module; and a plurality of light path adjustment devices located between the packaging cover plate and the fingerprint recognition component, wherein each of the light path adjustment devices comprises an optical fiber structure and a convex lens structure, which are arranged opposite each other, with the convex lens structure being located on the side of the optical fiber structure that is away from the packaging cover plate; and the light path adjustment devices are configured to adjust incident light reflected by a finger so as to reduce the angle of divergence of light entering the fingerprint recognition component.
US11694469B2
A display device includes a substrate and a pixel layer disposed on the substrate. The pixel layer includes a circuit element layer having an opening. The circuit element layer includes a first semiconductor layer and a first conductive layer that includes a first scan line pattern and an emission control line. A second conductive layer is disposed on the first conductive layer and includes a first initialization line, a second scan line pattern and a third scan line pattern. A second semiconductor layer is disposed on the second conductive layer. A third conductive layer is disposed on the second semiconductor layer and includes fourth and fifth scan line patterns. The first initialization line includes a first portion and a second portion each extending in a first direction, and a third portion disposed therebetween. The second portion extends diagonally with respect to the first direction.
US11694460B1
Disclosed are systems, methods, and computer readable media for natural language processing and text analytics of audit documentation for prioritization and selection. Text extraction and conversion techniques can analyze documents corresponding to an audit request to generate a dataset. A two-layer model can produce word embeddings to reconstruct linguistic contexts of words in the dataset. An embedding layer can map each word, and a classifier layer can generate a similarity score for each word. A three-layer model can determine weights of documents in the dataset. A ranking layer can obtain a document rank value for each document. An initial layer and successive layers can receive feature vectors and document rank values to assign weights to the documents. Based on the document weights and the audit request, the natural language processing and text analytics can determine an audit likelihood for each document to prioritize and select subsets of the documents.
US11694458B2
An image processing apparatus that enables easy setting of metadata of image data. The image processing apparatus obtains image data associated with a selected work. A key candidate is identified from t image data based on one or more key types defined according to the selected work. A value candidate corresponding to the identified key candidate is identified based on a value type rule and a value search area rule which are defined for each of the one or more key types, and the identified value candidate is set as the metadata of the image data.
US11694451B2
According to an embodiment, a reading system includes a reader and a calculator. The reader reads, from a character image, a character that is displayed by a segment display. The calculator performs one of first, second, third, or fourth processing. In the first processing, the calculator calculates a first score based on a state of pixels of the character. In the second processing, the calculator calculates a second score based on a match ratio between the pixels and the extracted pixels. In the third processing, the calculator calculates a third score based on a ratio of a length of the character image in first and second direction. In the fourth processing, the calculator calculates a fourth score based on a comparison result between the detected result and preset patterns. The calculator calculates a certainty of the reading by using one of the first, second, third, or fourth score.
US11694448B2
A camera monitoring system for motor vehicles is provided. An image capturing device is provided on a mounting assembly of the vehicle for an exterior field of view (FOV) of the vehicle extending sideward and rearward outside the vehicle and encompassing a portion of the exterior part of the vehicle. An electronic control unit (ECU) is connected to the image capturing device to obtain a captured image. An electronic display device is connected to the ECU and is located inside the vehicle and to be used by a driver. A gesture detector is configured to obtain at least one position of at least one part of the driver's body. The ECU is configured to adjust the FOV based on the obtained position and the display device is configured to display the adjusted FOV in a displayed image region, which can be moved within the captured image.
US11694446B2
ADAS includes a processing circuit and a memory which stores instructions executable by the processing circuit. The processing circuit executes the instructions to cause the ADAS to receive, from a vehicle that is in motion, a video sequence, generate a position image including at least one object included in the stereo image, generate a second position information associated with the at least one object based on reflected signals received from the vehicle, determine regions each including at least a portion of the at least one object as candidate bounding boxes based on the stereo image and the position image, and selectively adjusting class scores of respective ones of the candidate bounding boxes associated with the at least one object based on whether a respective first position information of the respective ones of the candidate bounding boxes matches the second position information.
US11694443B2
Machine-based video classifying to identify misleading videos by training a model using a video corpus, obtaining a subject video from a content server, generating respective feature vectors of a title, a thumbnail, a description, and a content of the subject video, determining a first semantic similarities between ones of the feature vectors, determining a second semantic similarity between the title of subject video and titles of videos in the misleading video corpus in a same domain as the subject video, determining a third semantic similarity between comments of the subject video and comments of videos in the misleading video corpus in the same domain as the subject video, classifying the subject video using the model and based on the first semantic similarities, the second semantic similarity, and the third semantic similarity, and outputting the classification of the subject video to a user.
US11694433B2
A method may include obtaining an infrared image of an object and determining a difference of Gaussian image that represents features of the infrared image that have spatial frequencies within a spatial frequency range defined by a first Gaussian operator and a second Gaussian operator. The method may also include identifying one or more blob regions within the difference of Gaussian image. Each blob region of the one or more blob regions includes a region of connected pixels in the difference of Gaussian image. The method may further include, based on identifying the one or more blob regions within the difference of Gaussian image, determining that the infrared image represents the object illuminated by a pattern projected onto the object by an infrared projector.
US11694430B2
Systems, methods, and devices for detecting brake lights are disclosed herein. A system includes a mode component, a vehicle region component, and a classification component. The mode component is configured to select a night mode or day mode based on a pixel brightness in an image frame. The vehicle region component is configured to detect a region corresponding to a vehicle based on data from a range sensor when in a night mode or based on camera image data when in the day mode. The classification component is configured to classify a brake light of the vehicle as on or off based on image data in the region corresponding to the vehicle.
US11694425B2
Aspects of the present disclosure relate to multi-spectrum visual object recognition. A first image corresponding to visible light and a second image corresponding to invisible light with respect to an object can be obtained. A first contour of the object can be identified based on the first image. A second contour of the object can be identified based on the second image. The first contour of the object and the second contour of the object can be integrated to generate a multi-spectrum contour of the object. The object can be recognized using the multi-spectrum contour of the object.
US11694417B2
Disclosed are systems and methods for template-based generation of personalized videos. An example method may commence with receiving video configuration data including a sequence of frame images, a sequence of face area parameters defining positions of a face area in the frame images, and a sequence of skin masks defining positions of a skin area of a part of the at least one body in the frame images. The method may continue with receiving an image of a source face. The method may further include determining color data associated with the source face. The method may include recoloring the skin area of the part of the at least one body in the frame image and inserting the image of the source face into the frame image at a position determined by face area parameters corresponding to the frame image to generate an output frame of an output video.
US11694413B2
Disclosed herein are various embodiments for image editing and sharing in an augmented reality computing environment. An embodiment operates by receiving, from a first user, an edit command indicating a selection of an image from within an augmented reality computing environment. Responsive to the edit command, the image is moved from a first location within the augmented reality computing environment to a second location within the augmented reality computing environment closer to the first user than the first location. One or more edits to the image are received from the first user. The image including the one more edits are returned to the first location upon a completion of the one or more edits.
US11694409B1
A split-architecture for rendering and warping world-locked AR elements, such as graphics in a navigation application, for display on augmented reality (AR) glasses is disclosed. The split-architecture can help to alleviate a resource burden on the AR glasses by performing the more complex processes associated with the rendering and warping on a computing device, while performing the less complex processes associated with the rendering and warping on the AR glasses. The AR glasses and the computing device are coupled via wireless communication, and the disclosed systems and methods address the large and variable latencies associated with the wireless communication that could otherwise make splitting these processes impractical.
US11694408B2
The present technology relates to an information processing device, an information processing method, a program, and a movable object that enable prevention of a user from suffering from motion sickness.
The information processing device includes: a display-position setting unit configured to move, on the basis of the motion of a movable object, the display position of a first picture viewed from a predetermined point of view of the movable object; and a display control unit configured to perform display control based on the display position set. The present technology can be applied to, for example, a vehicle that displays a picture in superimposition on the ambient scenery.
US11694407B2
A method of displaying virtual information in a view of a real environment comprising the following steps: providing the system relative to at least one part of the real environment and providing accuracy information of the current pose, providing multiple pieces of virtual information, and assigning a respective one of the pieces of virtual information to one of different parameters indicative of different pose accuracy information, and displaying at least one of the pieces of virtual information in the view of the real environment according to the accuracy information of the current pose in relation to the assigned parameter.
US11694403B2
Systems and methods include determination of a first component of a set of components under assembly in a physical environment, determination of a first physical position of a user with respect to the first component in the physical environment, determination of a second component of the set of components under assembly to be installed at least partially on the first component based on assembly information associated with the set of components, determination of three-dimensional surface data of the second component, determination of a physical relationship in which the second component is to be installed at least partially on the first component based on a model associated with the set of components, determination of a graphical representation of the second component based on the first physical position of the user with respect to the first component, the physical relationship, and the three-dimensional surface data of the second component, and presentation of the graphical representation to the user in a view including the first component in the physical environment, wherein the presented graphical representation appears to the user to be in the physical relationship with respect to the first component.
US11694400B2
High-fidelity three-dimensional (3D) models and other high-fidelity digital media that depict objects with a high-level of detail may be computationally demanding to display on some devices. According to some embodiments of the present disclosure, digital media may be supplemented with one or more 3D models to improve the overall level of detail provided by the digital media without excessively increasing computational requirements. An example computer-implemented method includes instructing a user device to display digital media depicting an object, receiving an indication selecting a region of the depicted object, and instructing the user device to display a 3D model corresponding to the selected region of the depicted object, where the 3D model is different from the digital media.
US11694388B2
A system for creating synthetic data for testing an autonomous system, comprising at least one hardware processor adapted to execute a code for: using a machine learning model to compute a plurality of depth maps based on a plurality of real signals captured simultaneously from a common physical scene, each of the plurality of real signals are captured by one of a plurality of sensors, each of the plurality of computed depth maps qualifies one of the plurality of real signals; applying a point of view transformation to the plurality of real signals and the plurality of depth maps, to produce synthetic data simulating a possible signal captured from the common physical scene by a target sensor in an identified position relative to the plurality of sensors; and providing the synthetic data to at least one testing engine to test an autonomous system comprising the target sensor.
US11694387B2
Systems and methods of generating a three-dimensional (3D) reconstruction of a scene or environment surrounding a user of a spatial computing system, such as a virtual reality, augmented reality or mixed reality system, using only multiview images comprising RGB images, and without the need for depth sensors or depth data from sensors. Features are extracted from a sequence of frames of RGB images and back-projected using known camera intrinsics and extrinsic s into a 3D voxel volume wherein each pixel of the voxel volume is mapped to a ray in the voxel volume. The back-projected features are fused into the 3D voxel volume. The 3D voxel volume is passed through a 3D convolutional neural network to refine the and regress truncated signed distance function values at each voxel of the 3D voxel volume.
US11694386B2
A System for image processing (IPS), in particular for lung imaging. The system (IPS) comprises an interface (IN) for receiving at least a part of a 3D image volume (VL) acquired by PAT an imaging apparatus (IA1) of a lung (LG) of a subject (PAT) by exposing the subject (PAT) to a first interrogating signal. A layer definer (LD) of the system (IPS) is configured to define, in the 3D image volume, a layer object (LO) that includes a representation of a surface (S) of the lung (LG). A renderer (REN) of the system (IPS) is configured to render at least a part of the layer object (LO) in 3D at a rendering view (Vp) for visualization on a display device (DD).
US11694379B1
In one implementation, a method of displaying an animation is performed at a device including an optical see-through display, one or more processors, and a non-transitory memory. The method includes receiving a request to display a first animation of an object exhibiting a response characteristic. The method includes determining a metric characterizing an amount of processing power for the device to display the first animation on the optical see-through display. The method includes, in response to a determination that the metric exceeds a threshold associated with the device, selecting a second animation of the object exhibiting the response characteristic. The method includes displaying the second animation.
US11694375B2
Systems and methods for pixel-based quantum state visualization are disclosed. In one embodiment, a computer-based method for generating a visualization of a quantum state may include: (1) receiving, at a computer program executed by a computer processor, quantum input data comprising a plurality of outcomes for a quantum state, each outcome having a phase and a magnitude; (2) for each outcome, translating, by the computer program, the outcome into a pixel having a hue based on the phase and an intensity based on the magnitude; (3) plotting, by the computer program, the pixel on a pixel graph; and (4) outputting, by the computer program, the pixel graph to an output device.
US11694371B2
An apparatus, method, and computer readable medium that access a frame buffer of a graphics processing unit (GPU), analyze, in the frame buffer, a frame representing displayed data, based on the analyzed frame, identify a reference patch that includes an instruction to retrieve content, generate an overlay including an augmentation layer which includes the content, superimpose the overlay onto the displayed data such that the content is viewable while a portion of the base layer is obscured, detect a user input, determine a location of the user input in the augmentation layer, associate the location in the augmentation layer with a target location in the base layer, and associate, within memory, the target location with an operation such that the user input in the augmentation layer activates an input in the base layer.
US11694361B2
A seed camera disposed a first location is manually calibrated. A second camera, disposed at a second location, detects a physical marker based on predefined characteristics of the physical marker. The physical marker is located within an overlapping field of view between the seed camera and the second camera. The second camera is calibrated based on a combination of the physical location of the physical marker, the first location of the seed camera, the second location of the second camera, a first image of the physical marker generated with the seed camera, and a second image of the physical marker generated with the second camera.
US11694359B2
A method and apparatus for calibrating a camera are provided. A specific embodiment of the method includes: acquiring an image-point cloud sequence, the image-point cloud sequence including at least one group of an initial image and point cloud data collected at a same time, the initial image being collected by a camera provided on an autonomous vehicle and the point cloud data being collected by a radar provided on the autonomous vehicle; determining target point cloud data of initial images corresponding to groups of image-point cloud in the image-point cloud sequence; and matching the target point cloud data with the corresponding initial images in the image-point cloud sequence to determine a correction parameter of the camera.
US11694357B2
A method of determining one or more shading conditions associated with a structure is provided. A method may include determining an azimuth of a reference roof edge relative to an orientation of a first image of a structure. The method may further include determining a relative azimuth of the reference roof edge from a lower hemisphere of a second, different image captured proximate the structure. In addition, the method may include determining one or more shading conditions associated with the structure based on the azimuth of the reference roof edge and the relative azimuth of the reference roof edge.
US11694356B2
Methods and systems for jointly estimating a pose and a shape of an object perceived by an autonomous vehicle are described. The system includes data and program code collectively defining a neural network which has been trained to jointly estimate a pose and a shape of a plurality of objects from incomplete point cloud data. The neural network includes a trained shared encoder neural network, a trained pose decoder neural network, and a trained shape decoder neural network. The method includes receiving an incomplete point cloud representation of an object, inputting the point cloud data into the trained shared encoder, outputting a code representative of the point cloud data. The method also includes generating an estimated pose and shape of the object based on the code. The pose includes at least a heading or a translation and the shape includes a denser point cloud representation of the object.
US11694348B2
A range of images projected by a first projector group and a range of images projected by a second projector group are set to coincide with each other. A first setting screen including a first region for setting positions of images projected by a respective plurality of projectors included in the first projector group and a second region for setting positions of images projected by a respective plurality of projectors included in the second projector group is displayed. Operation by a user on the first setting screen is received. The positions of the images projected by the respective plurality of projectors included in the first projector group and the positions of the images projected by the respective plurality of projectors included in the second projector group are set.
US11694345B2
A method of using both object features and scene features to track an object in a scene is provided. In one embodiment, the scene motion is compared with the object motion and if the motions differ greater than a threshold, then the pose from object tracker is used; otherwise, the pose from scene tracker is used. In another embodiment, the pose of an object is tracked by both scene tracker and object tracker and these poses are compared. If these comparison results in a difference greater than a threshold, the pose from object tracker is used; otherwise, the pose from scene tracker is used.
US11694336B2
Embodiments relate to systems and methods for gaming monitoring. In particular, embodiments relate to systems and methods for gaming monitoring based on machine learning processes configured to analyse captured images to identify or detect game objects and game events to monitor games.
US11694330B2
A medical image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry is configured to extract a degree of a disease related to the heart from a medical image; and display, when the degree of the disease related to the heart is high, a first index value related to a blood vessel and calculated from one of blood pressure and a blood flow and configured to display, when the degree of the disease related to the heart is low, wall shear stress serving as a second index value related to the blood vessel, as information related to the blood flow of the blood vessel and calculated on the basis of the medical image.
US11694329B2
A mechanism is provided to implement a trained machine learning computer model for determining z-wise lesion connectivity. The mechanism identifies, for a given slice in a three-dimensional medical image, a first lesion in the given slice and a second lesion in an adjacent slice in the three-dimensional medical image. The mechanism determines a first intersect value between the first lesion and the second lesion with respect to the first lesion and determines a second intersect value between the first lesion and the second lesion with respect to the second lesion. The mechanism determines whether the first lesion and the second lesion belong to the same three-dimensional lesion based on the first and second intersect values.
US11694328B2
A method and system are disclosed for outputting augmented reality information to a first user. In an embodiment, the method includes acquiring first information, including image information, depth information, coordinate information and combinations thereof, the first information relating to at least one of a medical device and a medical examination of a patient; creating the augmented reality information, relating to the medical device and/or the medical examination of the patient, based on the first information; and outputting the augmented reality information such that the augmented reality information is perceivable in a field of view of the first user.
US11694310B2
An image processing method includes a first step of acquiring input data including a captured image and optical system information relating to a state of an optical system used for capturing the captured image and a second step of inputting the input data to a machine learning model and of generating an estimated image acquired by sharpening the captured image or by reshaping blurs included in the captured image.
US11694309B2
The technology disclosed relates to equalizer-based intensity correction for base calling. In particular, the technology disclosed relates to accessing an image whose pixels depict intensity emissions from a target cluster and intensity emissions from additional adjacent clusters, selecting a lookup table that contains pixel coefficients that are configured to increase a signal-to-noise ratio, applying the pixel coefficients to intensity values of the pixels in the image to produce an output, and base calling the target cluster based on the output.
US11694308B2
Disclosed are devices, systems and methods for processing an image. In one aspect a method includes receiving an image from a sensor array including an x-y array of pixels, each pixel in the x-y array of pixels having a value selected from one of three primary colors, based on a corresponding x-y value in a mask pattern. The method may further include generating a preprocessed image by performing preprocessing on the image. The method may further include performing perception on the preprocessed image to determine one or more outlines of physical objects.
US11694304B2
A method may include obtaining a set of events, of a set of pixels of a dynamic vision sensor, associated with an object; determining a set of voltages of the set of pixels, based on the set of events; generating a set of images, based on the set of voltages of the set of pixels; inputting the set of images into a first neural network configured to output a visual motion estimation of the object; inputting the set of images into a second neural network configured to output a confidence score of the visual motion estimation output by the first neural network; obtaining the visual motion estimation of the object and the confidence score of the visual motion estimation of the object, based on inputting the set of images into the first neural network and the second neural network; and providing the visual motion estimation of the object and the confidence score.
US11694299B2
Embodiments are disclosed for emulation of graphics processing unit instructions. An example method executing an instrumented kernel using a logic circuit, the instrumented kernel including an emulation sequence; saving, in response to determination that the emulation sequence is to be executed, source data to a shared memory; setting an emulation request flag to indicate to processor circuitry separate from the logic circuit that offloaded execution of the emulation sequence is to be executed; monitoring the emulation request flag to determine whether the offloaded execution of the emulation sequence is complete; and accessing resulting data from the shared memory.
US11694293B2
A system and method for generating analytics based on interactions through digital channels. The method includes determining a plurality of interaction sensor signals based on interactions with an electronic form (e-form); clustering at least one set of similar interaction sensor signals of the determined plurality of interaction sensor signals, wherein each set of similar interaction sensor signals includes signals determined based on interactions with the same portion of the e-form; and generating at least one analytic based on each clustered set of interaction sensor signals.
US11694282B2
A platform built on blockchain that is designed to help increase traceability, efficiency and fairness in agricultural supply chains, such as the coffee, cocoa, tea, sugar, grains and fruit supply chains. The platform includes a Self-Sovereign Identity solution, a new form of digital identity built on distributed ledger technology. Farmers, wholesalers, traders and retailers can interact more efficiently using comprehensive, near real-time access to this data, and consumers can have new insights about the origins of the products they consume. The platform includes a consumer-facing application that pulls information directly from the blockchain and connects the final consumer, e.g. a coffee drinker, to farmers, traders, roasters and brands. The information is presented on an interactive map, allowing each product to tell a story in a simple and scalable way. The app also presents sustainability projects in coffee communities and an opportunity for consumers to directly support them.
US11694280B2
An automated system/method for identifying and enabling viewer selection/purchase of products or services associated with digital content presented on a display device. Products within the digital content are identified and existing product placement data is ascertained. For products that do not include such data, other methodologies, with the assistance of third-party servers, are employed to assess identity and purchase availability. Viewer input designate products to assess or products can be automatically assessed. Viewers initiate purchase of identified products via the display device or other electronic devices controlled by viewers, such as via viewers' smart phones. Various processes for identifying products include use of AI processing, access to data on third-party servers, crowd sourcing and other methodologies. Various techniques for selecting products for purchases are employed including employing 3D codes (e.g., QR codes) alongside presented products to enable other portable electronic devices to facilitate purchase. Other features are described.
US11694278B2
Disclosed are systems and methods for improving interactions with and between computers searching, hosting and/or providing systems supported by or configured with personal computing devices, servers and/or platforms. The methods and systems analyze digital message content in digital communication systems to automatically identify shared user interest(s), to automatically create computerized relationship matrix data identifying user connections, or relationships, using identified shared user interest(s), and to automatically provide a recommendation using the shared user interest and user relationships formed using the shared user interest.
US11694273B2
A risk relationship package data store may contain electronic records, each electronic record representing a risk relationship package between an enterprise and an entity, and including, for each package, an electronic record identifier and an overall attribute value. A computer server may transmit, to a remote device associated with the entity, a set of potential types of risk coverage based on information in an available type of risk coverage data store. The server may then receive an indication of a selected subset of the potential types of risk coverage and, based on the received indication and a pre-determined rule, generate a risk relationship package for the entity using a flexible structure framework. The server may calculate an overall attribute value for the package based on an attribute algorithm (such that at least one reduction to the overall attribute value is applied based on an amount associated with the selected subset).
US11694269B2
Systems and methods of assessing climate transition risk. A computing system receives a user indication of a selected climate change scenario from a remote client device. The system identifies one or more energy factors from among energy sources. The system retrieves historical financial information directed to one or more securities from remote financial data sources. The system predicts one or more future returns for the securities, by applying the historical financial data and the energy factors to at least one hierarchical linear model. The system adjusts the predicted future returns based on a first climate scenario and the selected climate scenario, to form respective first and second adjusted returns. The system generates a climate transition risk for the securities based on a spread between the first adjusted returns and the second adjusted returns. The system provides a data set representing the climate transition risk to the remote client device.
US11694266B2
The disclosed embodiments relate to ensuring that a selected value, selected, for example, via interaction with a graphic user interface, of a dynamically changing parameter, such as a price, is used when generating an electronic data transaction request message in a data transaction processing system, such as an electronic trading system. The data transaction processing system being a system in which data items, such as financial contracts, e.g., futures contracts, are transacted or otherwise traded by a hardware matching processor that attempts to match electronic data transaction request messages with electronic data transaction request messages counter thereto for the same one of the data items based on multiple transaction parameters. A selected value is temporarily buffered allowing the represented value to update wherein a subsequently generated transaction may be based on the buffered value rather than an updated value.
US11694260B2
An example method includes receiving, at a first computing device, market data related to a plurality of tradeable objects. The example method includes displaying, via an interface, the received market data via at the first computing device. The interface is based on an interface object model including a plurality of data components corresponding to the received market data. The example method includes receiving an input selection to share the interface with a second computing device and generating a transfer object model based on the interface object model in response to the receipt of the input selection. The example method includes identifying a first group of the plurality of data components included in the transfer object model and redacting the first group of the plurality of data components corresponding to the received market data components. The example method includes transmitting the redacted transfer object model to the second computing device.
US11694248B2
The present disclosure relates to a personalized fashion generation system that synthesizes user-customized images using deep learning techniques based on visually-aware user preferences. In particular, the personalized fashion generation system employs an image generative adversarial neural network and a personalized preference network to synthesize new fashion items that are individually customized for a user. Additionally, the personalized fashion generation system can modify existing fashion items to tailor the fashion items to a user's tastes and preferences.
US11694244B2
A method begins with a server in a data communication system identifying an instance for a user computing device associated with an exchange item to utilize the exchange item for acquisition of a particular item, where the exchange item has a quantifiable value and the particular item has an acquisition value. The method continues by, for the instance, determining compliance with one or more rules of a set of exchange item rules, determining that the quantifiable value of the exchange item is less than the acquisition value of the particular item, determining an alternative exchange item utilization protocol to facilitate the acquisition of the particular item such that the quantifiable value of the exchange item is greater than or equal to the acquisition value, and when requested, executing the alternative exchange item utilization protocol to facilitate the acquisition of the particular item.
US11694237B2
Systems and methods for dynamically inserting content into webpages. A computing device can receive an information resource. The computing device can receive a content item for insertion at one of the candidate content insertion locations of the information resource. The computing device can identify candidate content insertion locations for insertion of the content item based on locations of one or more elements on the information resource. The computing device can monitor for a scroll event on the information resource. The computing device can identify a portion of the information resource to be displayed within the viewport of the application subsequent to processing the event. The computing device can determine that one of the candidate insertion locations is within or below the viewport. The computing device can set a content slot at the determined content insertion location. The computing device can insert, at the content slot, the content item.
US11694235B2
Provided herein are systems, methods, and computer readable media for programmatically generating and/or revising promotion offers for a merchant based on one or more merchant self-service indicators. In providing such functionality, the system can be configured to, for example, receive one or more merchant self-service indicators; store the self-service indicators; generate a promotion based on a plurality of promotion components, wherein the generation of the promotion components comprises accessing the promotion component generators by enabling asynchronous processing of the promotion component generation requests, wherein the accessing of the promotion component generators occurs in parallel which enables parallel generation of each of the promotion components via independent performance of the promotion component generators; comparing the self-service indicators that were previously stored against required and optional inputs of the promotion component generators; selecting the promotion component generators based on required and optional inputs; and generating the promotion from the promotion components generated.
US11694232B2
Methods, systems, and apparatus, including computer programs encoded on a computer-readable storage medium, for providing content. A method includes receiving a request for an advertisement to be displayed in a slot associated with a third-party content site; identifying a relevant advertisement to be provided in the slot; determining information to be included in an annotation associated with the advertisement, the annotation including customized information to be presented along with the advertisement; providing the advertisement responsive to the request including providing the annotation along with a control for re-publishing the advertisement along with the relevant advertisement; receiving user input selecting the control and designating the advertisement for re-publishing to a group, the group being designated by the user; and targeting additional content to the group based on the received user input.
US11694231B2
An advertisement presentation system includes at least one display device that is detachably provided to a vehicle, an information processing device, and a management server. The information processing device is configured to acquire advertisement information representing an advertisement, and to output the acquired advertisement information to the display device. The display device is configured to present the advertisement information output from the information processing device such that the advertisement information is directed outward from the vehicle. The information processing device is configured to transmit task report information representing a presentation task report for the advertisement information by the display device to the management server. The management server is configured to determine remuneration to cover both incurred data communication costs and advertising costs associated with presentation of the advertisement information, in accordance with the task report information transmitted from the information processing device.
US11694227B1
According to an embodiment, a data processing method comprises obtaining a first record associated with a first computer and a second record associated with a second computer that is different than the first computer; in response to determining that the first record has been obtained from a primary source, determining that at least a first set of key information in the first record matches a second set of key information in the second record, and in response thereto: creating and storing a master record comprising a union of the first record and the second record; using the master record to determine one or more electronic offers to present to any of a user, a computing device, or an account that is associated with the master record.
US11694215B2
Systems, methods, and media for managing web content. Exemplary methods may include the steps of providing a web content management application via a web site, generating a web marketing campaign from at least a portion of a global marketing framework via a web server, gathering via the web server marketing data from at least one of the web server associated with the web marketing campaign and consumer devices accessing the web marketing campaign, the marketing data including information indicative of interests of consumers, storing the marketing data in a database, associating consumers together according to at least one common interest to create one or more consumer groups, and providing the one or more consumer groups to at least one marketing content author.
US11694205B2
Disclosed are systems and methods for data breach identification. The method may include: generating virtual card number (VCN) data sets; storing the VCN data sets on a first database; receiving one or more compromised VCN data sets stored on a second database and obtained from a scan of unindexed websites; comparing the compromised VCN data sets with the VCN data set stored on the first database to determine whether the VCN data sets have been compromised; for each compromised VCN data set, training the recurrent neural network (RNN) to associate the compromised VCN data sets with one or more sequential patterns found within the compromised VCN data sets to generate a trained RNN; receiving a first VCN data set from the first database; determining whether the first VCN data set matches a compromised VCN data set; and transmitting a message indicating the determination to a user or provider device.
US11694202B2
In general, according to one embodiment, a transaction certification system includes a transaction processing apparatus and a server. The transaction processing apparatus outputs encrypted data including transaction certification data for certification of a transaction executed on the transaction processing apparatus. The server receives the encrypted data from a first terminal apparatus that reads the encrypted data that has been output by the transaction processing apparatus. The server acquires a first user identifier identifying a user of the first terminal apparatus sending the encrypted data. The server stores the transaction certification data of the encrypted data in a storage device. The transaction certification data is stored in correlation with the acquired user identifier. The server receives a second user identifier from a user requesting a transaction certification, and then transmits the transaction certification data to a second terminal apparatus associated with the second user identifier.
US11694199B2
Methods, apparatus and computer software are provided for authorizing an EMV transaction between a user device and a point of sale terminal, particularly, but not exclusively, in situations where a secure element is not made available for the deployment of a payment application on the user device. The payment application is instead deployed to a processing environment that is outside of any secure element on the user device. An ICC Master Key corresponding to the payment application is held by a trusted authority, such as the issuing bank. The trusted authority is adapted generate time-limited session keys on the basis of the ICC Master Key and distribute session keys to the payment application. Receipt of a session key by the payment application enables the payment application to conduct an EMV payment transaction. The session key is used to authorize a single EMV payment transaction.
US11694180B2
Methods, systems, and machine-readable media are disclosed for registering a mobile device for use in a mobile commerce system. According to one embodiment, a method of registering a mobile device for use in a mobile commerce system can comprise receiving at a service provider system a registration request from a user of the mobile device. A determination can be made with the service provider system whether to allow registration of the mobile device. In response to determining to allow registration of the mobile device, the registration request can be sent from the service provider system to an acquirer system.
US11694158B2
A method includes receiving a data processing request at a computing system. The data processing request identifies data to be compared to sets of criteria according to a predefined sequence of the sets that is defined by a non-variant logic process. The method also includes determining whether the request is to be processed according to a variant logic process that defines a modified sequence of the criteria sets than the non-variant logic process. The method also includes dynamically altering the predefined sequence of the criteria sets to the modified sequence responsive to determining that the request is to be processed using the variant logic process, comparing the data identified by the request with the criteria sets according to the modified sequence, and processing the data according to the criteria sets of criteria in the modified sequence.
US11694156B2
Disclosed embodiments provide systems and techniques for mass execution of analytical models across multiple dimensions of client, collateral, deal structure, third party, and other data relevant to predicting optimal decisions in real-time. In some embodiments, disclosed systems and techniques increase decisioning speed through the reduction of computational loads on disclosed decisioning systems. Further disclosed systems and techniques may scale-out analytical modeling computations through, among other technological solutions, advanced execution environments that are asynchronous and non-blocking in nature so as to allow the execution of a plurality of analytical models in parallel and optimizing the results.
US11694153B2
Systems and methods including one or more processing modules and one or more non-transitory storage modules storing computing instructions configured to run on the one or more processing modules and perform acts of receiving a return request for an item from a customer electronic device of a customer, determining that the return request is available for a pickup return option for (1) pickup, by a driver, of the item at an address associated with the customer and (2) transportation, by the driver, of the item from the address to the store, and, if the customer selects a pickup return option: assigning the driver to pick up the item from the address and transport the item to the store, receiving a return scan for the item from a store electronic device at the store or from a driver electronic device, and initiating a refund to the customer for the item.
US11694142B2
Methods and systems for controlling production resources in a supply chain are described. The system automatically generates predicted supply chain operational metrics across a nodes of a supply chain. The system automatically infers causal factors that impact the predicted supply chain operational metrics. The causal factors include a change to a utilization of the production resource. The system communicates a user interface including production runs being scheduled on the production resource including a user interface element representing the scheduling of the production run associated with a value at risk. The system receives input causing a change to the utilization of the production resource. The change to the utilization of the production resource impacts the predicted supply chain operational metrics including the value at risk associated with the scheduling of the production run.
US11694141B2
Workflows stored in a workflow database are annotated, each of the workflows including an ordered sequence of steps. Sub-workflows are extracted from the workflows by splitting the workflows into sub-workflows at annotations that exist between the steps, a first of the sub-workflows including the respective annotation as an output of the first of the sub-workflows, a second of the sub-workflows including the respective annotation as an input to the second of the sub-workflows. Annotations in common between the sub-workflows are identified, including identifying beginning sub-workflows that include the respective annotation as an output and identifying ending sub-workflows that include the respective annotation as an input. The sub-workflows are recombined into new workflows by splicing together the sub-workflows at the annotations in common, such that each new workflow is formed from one of the beginning sub-workflows followed by one of the ending sub-workflows.
US11694137B2
A method includes generating first contrast significance data for a first computer vision model generated from a first training set of medical scans. First significant contrast parameters are identified based on the first contrast significance data. A first re-contrasted training set is generated based on performing a first intensity transformation function on the first training set of medical scans, where the first intensity transformation function utilizes the first significant contrast parameters. A first re-trained model is generated from the first re-contrasted training set, which is associated with corresponding output labels based on abnormality data for the first training set of medical scans. Re-contrasted image data of a new medical scan is generated based on performing the first intensity transformation function. Inference data indicating at least one abnormality detected in the new medical scan is generated based on utilizing the first re-trained model on the re-contrasted image data.
US11694136B2
A method includes generating a longitudinal lesion model by performing a training step on a plurality of sets of longitudinal data. Dates of medical scans of different ones of the plurality of sets of longitudinal data have relative time differences corresponding to different time spans, and each set of the plurality of sets of longitudinal data corresponds to one of a plurality of different patients. The longitudinal lesion model is utilized to perform an inference step on a received medical scan to generate, for a lesion detected in the received medical scan, a plurality of lesion change prediction data for a corresponding plurality of different projected time spans ending after the current date. At least one of the plurality of lesion change prediction data is transmitted for display.
US11694126B2
An information processing apparatus includes a hardware processor which (i) performs learning by a learning data set associated with a correct answer label for a preset problem and creates a machine learning model for estimating a correct answer to the preset problem for input data, (ii) estimates the correct answer to the preset problem for the input data by using the machine learning model, (iii) in response to a user operation, determines a label indicating a result of the estimation as a correct answer label of the input data or corrects the label to determine the corrected label as a correct answer label of the input data, and (iv) additionally registers the determined correct answer label as learning data in association with the input data in the learning data set.
US11694119B1
The Multidimensional Machine Learning Data and User Interface Segment Tagging Engine Apparatuses, Methods and Systems (“MLUI”) transforms ambient condition data, sales data, user interface selections, cognitive intelligence question input inputs via MLUI components into project projections, campaigns, user interface visualizations, cognitive intelligence question output outputs. A category identifier selection is obtained via a category selection interaction interface mechanism. Entity segment identifier selections are obtained via entity segment selection interaction interface mechanisms. A set of visualization cognitive intelligence (CI) datapoint identifiers is determined as CI datapoint identifiers associated with each combination of a selected entity segment identifier and the selected category identifier. CI datapoint values corresponding to the set of visualization CI datapoint identifiers are retrieved from a NoSQL database configured to act as cache for generating visualizations based on metrics calculated using survey data. A visualization is generated using the retrieved CI datapoint values.
US11694103B2
Example circuit implementations of Szegedy's quantization of the Metropolis-Hastings walk are presented. In certain disclosed embodiments, a quantum walk procedure of a Markov chain Monte Carlo simulation is implemented in which a quantum move register is reset at every step in the quantum walk. In further embodiments, a quantum walk procedure of a Markov chain Monte Carlo simulation is implemented in which an underlying classical walk is obtained using a Metropolis-Hastings rotation or a Glauber dynamics rotation. In some embodiments, a quantum walk procedure is performed in the quantum computing device to implement a Markov Chain Monte Carlo method; during the quantum walk procedure, an intermediate measurement is obtained; and a rewinding procedure of one or more but not all steps of the quantum walk procedure is performed if the intermediate measurement produces an incorrect outcome.
US11694102B2
A device may receive a request to identify items that satisfy parameters of the request. The device may identify a plurality of items that satisfy the parameters. The device may generate a plurality of explanation sets. An explanation set of the plurality of explanation sets may relate to an item of the plurality of items. The explanation set may include at least one of: a positive explanation indicating that the item is positively associated with a first characteristic that relates to a first preference of a user, or a negative explanation indicating that the item is negatively associated with a second characteristic that relates to a second preference of the user. The device may select an item from the plurality of items based on the plurality of explanation sets. The device may provide information that includes an explanation set of the item selected.
US11694099B2
In a data processing method executed by a computer: inputting, in a third trained model, first output data corresponding to first input data for a first trained model to obtain second output data, the third trained model being acquired through training in which (i) output data of the first trained model is used as training data, and (ii) output data of a second trained model acquired by converting the first trained model is used as label data; obtaining first label data of the first input data; and retraining the first trained model using first differential data corresponding to differences between the second output data and the first label data.
US11694095B2
A method includes receiving well log data for a plurality of wells. A flag is generated based at least partially on the well log data. The wells are sorted into groups based at least partially on the well log data, the flag, or both. A model is built for each of the wells based at least partially on the well log data, the flag, and the groups.
US11694087B2
A computing system is disclosed including a convolutional neural configured to receive an input that describes a facial image and generate a facial object recognition output that describes one or more facial feature locations with respect to the facial image. The convolutional neural network can include a plurality of convolutional blocks. At least one of the convolutional blocks can include one or more separable convolutional layers configured to apply a depthwise convolution and a pointwise convolution during processing of an input to generate an output. The depthwise convolution can be applied with a kernel size that is greater than 3×3. At least one of the convolutional blocks can include a residual shortcut connection from its input to its output.
US11694081B2
Systems, methods, and devices for pruning a convolutional neural network (CNN). A subset of layers of the CNN is chosen, and for each layer of the subset of layers, how salient each filter in the layer is to an output of the CNN is determined, a subset of the filters in the layer is determined based on the salience of each filter in the layer, and the subset of filters in the layer is pruned. In some implementations, the layers of the subset of layers of the CNN are non-contiguous. In some implementations, the subset of layers includes odd numbered layers of the CNN and excludes even numbered layers of the CNN. In some implementations, the subset of layers includes even numbered layers of the CNN and excludes odd numbered layers of the CNN.
US11694079B2
A content-based image retrieval (CBIR) system and method is presented herein. The CBIR system generates a relatively short vector or array of data, referred to as a barcode, from an input image. The short vector or array data can be used to represent the content of the image for image retrieval purposes. The system obtains the image and applies a transform to the image to generate a plurality of image transform values. The system thresholds the plurality of image transform values to obtain compact image transform values. The system generates a barcode in accordance with the compact image transform values and representative of the image. The system may then transmit the barcode to a database for storage or draw the barcode on a display. The system may also compare barcodes to find and retrieve similar images associated with similar barcodes.
US11694074B2
An integrated circuit included in a device for performing a neural network operation includes a buffer configured to store feature map data in units of cells each including at least one feature, wherein the feature map data is for use in the neural network operation; and a multiplexing circuit configured to receive the feature map data from the buffer, and output extracted data by extracting feature data of one of features that are included within a plurality of cells in the received feature map data, the features each corresponding to an identical coordinate value.
US11694064B1
A method for local approximation of a predictive model may include receiving unclassified data associated with a plurality of unclassified data items. The unclassified data may be classified based on a first predictive model to generate classified data. A first data item may be selected from the classified data. A plurality of generated data items associated with the first data item may be generated using a generative model. The plurality of generated data items may be classified based on the first predictive model to generate classified generated data. A second predictive model may be trained with the classified generated data. A system and computer program product are also disclosed.
US11694061B2
A neural-symbolic computing engine can have two or more modules that are configured to cooperate with each other in order to create one or more gradient-based machine learning models that use machine learning on i) knowledge representations and ii) reasoning to solve an issue. A model representation module in the neural-symbolic computing engine is configured to apply one or more mathematical functions, at least including a logit transform, to truth values from first order logic elements supplied from a language module of the neural-symbolic computing engine.
US11694059B2
The embodiment of the present disclosure provides a method, an apparatus, an electronic device, and a storage medium for predicting user attribute. The method comprises acquiring an input of demographic-related information; determining features corresponding to the input of the demographic-related information and a weight corresponding to each feature, where the features comprise a single feature corresponding to each input of the demographic-related information, and/or a cross feature between the at least two single features; predicting user attribute according to each feature and its corresponding weight. Based on the solution provided by the embodiment of the present disclosure, the accuracy on the prediction of the user attribute can be effectively improved.
US11694056B2
Systems and methods for providing fraud prevention inserts in a chip pocket of a card are provided. A chip fraud prevention system includes a device including a chip and one or more fraud prevention inserts. The chip, and the fraud prevention inserts, may be at least partially encompassed in a chip pocket.
US11694049B2
A first computing device of a multi-part code system includes one or more optical scanners and a network application associated with a network computing device of the multi-part code system. The network application is operable to obtain a second portion of a code associated with a second computing device. The network computing device generated the code for an interaction between the first and second computing device. The network application is further operable to display the second portion of the code on a display area of an interactive display, receive a first portion of the code, and instruct a user to drag the first portion of the code to the display area to align with the second portion of the code. When the first and second portions of the code are aligned, the network application produces the code and sends a finalized interaction notification to the network computing device.
US11694042B2
Presented herein are embodiments of an unsupervised cross-lingual sentiment classification model (which may be referred to as multi-view encoder-classifier (MVEC)) that leverages an unsupervised machine translation (UMT) system and a language discriminator. Unlike previous language model (LM)-based fine-tuning approaches that adjust parameters solely based on the classification error on training data, embodiments employ an encoder-decoder framework of an UMT as a regularization component on the shared network parameters. In one or more embodiments, the cross-lingual encoder of embodiments learns a shared representation, which is effective for both reconstructing input sentences of two languages and generating more representative views from the input for classification. Experiments on five language pairs verify that an MVEC embodiment significantly outperforms other models for 8/11 sentiment classification tasks.
US11694038B2
Methods and systems are described herein for generating dynamic conversational responses. For example, dynamic conversational responses may facilitate an interactive exchange with users. Therefore, the methods and systems used specialized methods to enriched data that may be indicative of a user's intent prior to processing that data through the machine learning model, as well as a specialized architecture for the machine learning models that take advantage of the user interface format. For example, a first machine learning model may be trained using a multi-class cross entropy loss function, and a second machine learning model may be trained using a binary cross entropy loss function. A third output may be determined based on a weighted average of first and second outputs from the first and second machine learning models, and a subset of dynamic conversational responses may be generated based on the determined third output.
US11694036B2
A computing device receives user input to specify a natural language command directed to a data source. In accordance with the user input, the device forms an intermediate expression according to a context-free grammar and a semantic model of data fields in the data source. The natural language command includes (i) a first term that specifies an aggregation type in a first aggregation, (ii) a second term that specifies a data field, in the semantic model, to be aggregated for the first aggregation, and (iii) terms that specify data fields, in the semantic model, to determine grouping for the first aggregation. The device translates the intermediate expression into database queries, executes the database queries to retrieve one or more data sets from the data source, aggregated according to the first aggregation, then generates and displays a data visualization of the retrieved data sets.
US11694032B2
The present disclosure relates to chatbot systems and, more particularly, to techniques for determining that an input utterance is representative of a task that a particular chatbot can perform, based on matching the input utterance to a template. Techniques are also described for generating templates based on example utterances that have been provided for a chatbot. In certain embodiments, an initial set of templates is generated based on example utterances. This initial set of templates is then refined using template generalization techniques, which can be performed at the word or sentence level to generate a final set of templates for use at runtime, when the templates are matched against user utterances. The final set of templates may include one or more generalized templates that were derived from the initial set of templates and may also include the initial set of templates.
US11694031B2
Approaches presented herein enable identification of routine communication content. More specifically, a communication between one or more users is received. Words or phrases in the communication that are contained in a database of words or phrases related to misconduct are identified. The identified words or phrases are removed from the communication to create a set of remaining words. The set of remaining words are analyzed to predict the likelihood of the removed words or phrases appearing in the communication, such that a confidence level of the prediction is determined. In response to the determined confidence level being high, the identified words or phrases in the communication are classified as routine.
US11694025B2
A processor may receive first issue data. The first issue data may be associated with input data entered by a user into a user interface on the issue submission application. The processor may analyze the first issue data. The processor may select a first set of prompted issue descriptions. The first set of prompted issue descriptions may be selected based on analyzing the first issue data. The processor may prompt the user to select a subset of the first set of prompted issue descriptions. The processor may receive from the user a selected subset of the first set of prompted issue descriptions. The processor may output an identified issue description. The identified issue description may be generated based on the selected subset of the first set of prompted issue descriptions.
US11694001B2
A method for analyzing electromagnetic characteristic includes steps as follows. An electromagnetic evaluation model establishing step is performed, which includes establishing an object unit, a power transmitting unit, and a simulating unit. The object unit is an arbitrary geometry shape. The power transmitting unit has an electromagnetic signal. The simulating unit is defined as at least one base point emitting a plurality of beams to form a plurality of projection points. An electromagnetic reference model is provided, wherein the object unit and the power transmitting unit are combined to form the electromagnetic reference model. A comparing step is performed, wherein a radiation pattern data of the electromagnetic reference model and a radiation pattern data of the electromagnetic evaluation model are obtained by the electromagnetic signal, respectively, and the two radiation pattern data are compared to obtain an electromagnetic gain difference value.
US11694000B2
A simulation method and simulator for a system including a plurality of microring resonators, where the simulation method includes converting the plurality of microring resonators into an equivalent model, generating a virtual system including the equivalent model, inputting an input signal to the virtual system, and outputting an output signal from the virtual system.
US11693990B1
A medical data governance system records, secures, and provides appropriate access to all patient data. By concentrating all available relevant medical data into a single source, and providing a subset of data to each receiving subsystem with the correct source and time reference, the medical data governance system becomes the true source of data and guarantees the data consistency through the use of block chain signatures.
US11693988B2
A speech redaction engine includes a natural language processing (NLP)-based content redaction module receives an automatic speech recognition (ASR) decoding of a decoded portion of said digitized speech signal and utilizes NLP techniques to determine whether it contains sensitive information that should be redacted, and an ASR confidence-based redaction module that receives a confidence indicator and utilizes said confidence indicator to determine, independent of said NLP-based content redaction module, whether said decoded portion contains one or more word(s) that were recognized with a confidence level that is below a threshold. The speech redaction engine includes means for redacting said decoded portion if the NLP-based content redaction module determines that said portion should be redacted, and means for redacting the one or more word(s) if the ASR confidence-based redaction module determines that the one or more word(s) have the confidence level that is below the threshold.
US11693987B2
A method includes: obtaining, by a database server, security policies associated with a database hosted by the database server; obtaining, by the database server, first database data associated with the database; creating, by the database server, a knowledge distillation model using the security policies and the first database data; obtaining, by the database server, second database data associated with the database; creating, by the database server, a classification model using the second database data and an output of the knowledge distillation model; receiving, by the database server, a client database request to the database; determining, by the database server, a new security policy rule set using the classification model; and applying, by the database server, the new security policy rule set to the client database request.
US11693985B2
A method for execution by a storage network, the method begins by determining a failure rate of storage nodes of an active storage pool, establishing a number of standby storage nodes based on the determined failure rate, identifying resource identifiers for the failed storage node, selecting an available standby storage node, facilitating populating the selected available standby storage node with data slices associated with the failed storage node, utilizing the selected available standby storage node, facilitating population of a replacement storage node with the data slices from the selected available standby storage node and facilitating processing of further receive data access requests for data associated with the associated resource identifiers by utilizing the replacement storage node.
US11693978B2
A printed circuit (PC) card apparatus can, in an absence of external power provided to a Peripheral Component Interconnect Express (PCIe) PC card, prevent and detect unauthorized access to secure data stored on a memory device mounted on the PCIe PC card. The PCIe card includes a primary battery to supply, when external power is disconnected from the PCIe card, power to an electronic security device mounted on the PCIe card. The PC card apparatus also includes a PCIe edge connector protector enclosing electrically conductive fingers of a PCIe edge card connector. The PCIe edge connector protector includes a hidden supplemental charge storage device integrated into the PCIe edge connector protector. The PCIe edge connector protector also includes electrically conductive contacts to transfer supplemental power from the supplemental charge storage device to the electronic security device.
US11693956B2
A system including a deep learning processor receives one or more control signals from one or more of a factory's process, equipment and control (P/E/C) systems during a manufacturing process. The processor generates expected response data and expected behavioral pattern data for the control signals. The processor receives production response data from the one or more of the factory's P/E/C systems and generates production behavioral pattern data for the production response data. The process compares at least one of: the production response data to the expected response data, and the production behavioral pattern data to the expected behavioral pattern data to detect anomalous activity. As a result of detecting anomalous activity, the processor performs one or more operations to provide notice or cause one or more of the factory's P/E/C systems to address the anomalous activity.
US11693953B2
A pipeline for securely validating computer executable code in a third-party cloud environment is provided. The pipeline comprises an on-boarding account and a run account. The on-boarding account is configured to allow the user to access computer executable code input into the third-party cloud environment from the user and prevent the user from accessing the protected data input into the third-party cloud environment from a secure provider. The on-boarding account is also configured to transmit the computer executable code from the on-boarding account to another account in the third-party cloud environment if a first predetermined criterion is met. The run account is configured to allow the user to execute the computer executable code with the protected data and prevent the user from accessing the computer executable code. Moreover, a process for generating the pipeline and a method of securely validating computer executable code in a third-party cloud environment using the pipeline is provided.
US11693950B2
Computing systems with dynamic architectures may be used to secure against code-injection attacks and other exploits. A system may generate multiple representations of instructions or other data associated with each of a set of configurations of the system. The system may periodically or randomly change configurations such that malicious code that is executable in one configuration cannot be executed in another configuration. A system may also detect malicious code by comparing code previously generated in one representation with different representations of the same code. If, during execution of a representation of a program code, the system determines that the representation specifies instructions that differ from other representations of the same program code, they system may stop executing the compromised program code, change its configuration, and continue to execute another representation of the program code that has not been compromised.
US11693948B2
A computer-implemented method and a computer program product for enforcing verifiable mandatory access control (MAC) labels, and a data processing system. One embodiment may comprise receiving, from an entity, a first verifiable MAC label associated with an object, receiving, from the entity, a second verifiable MAC label associated with a subject requesting to access the object, and determining whether to grant, to the subject, access to the object responsive to the request based on comparing the first verifiable MAC label associated with the object and the second verifiable MAC label associated with the subject to a verifiable MAC policy. Each of the first verifiable MAC label, the second verifiable MAC label, and the verifiable MAC policy in some embodiments may be formatted as a verifiable credential that is machine readable and digitally signed.
US11693945B2
A security configuration file is received from a first application, the security configuration file including information of an authority. The first application assigns the authority to a second application to enable the second application to trigger jobs at the first application, and the second application provides shared services to a plurality of applications including the first application. A query is received from the second application and in response the authority is sent to the second application. A request for a token is received from the second application, the request including the authority. A token including the authority is sent to the second application. The second application sends the token to the first application when the second application triggers jobs at the first application.
US11693943B2
Systems and methods for authenticating a user via a customized image-based challenge are disclosed. In embodiments, a computer-implemented method comprises: receiving an access request from a user requesting access to content; generating a list of items recommended for the user based on computer-based user behavior data; selecting from the list of recommended items: a first set of items and a second set of items, wherein the first set of items are associated with a characteristic and the second set of items are not associated with the characteristic; generating an image-based challenge comprising a test question to be answered by the user and a plurality of selectable images including images of each of the first set of items and images of each of the second set of items; and providing the image-based challenge to a user computer device of the user.
US11693942B2
An access control apparatus and method for controlling a configuration of an automation apparatus. The method includes: reading authentication information from an electronic tag; transmitting the authentication information to a networked service; receiving access rights from the networked service; and controlling the configuration of the automation apparatus according to the access rights.
US11693937B2
An operation of a facial recognition authentication process may fail to authenticate a user even if the user is an authorized user of the device. In such cases, the facial recognition authentication process may automatically re-initiate to provide another attempt to authenticate the user using additional captured images. For the new attempt (e.g., the retry) to authenticate the user, one or more criteria for the images used in the facial recognition authentication process may be adjusted. For example, criteria for distance between the camera and the user's face and/or occlusion of the user's face in the images may be adjusted before the new attempt to authenticate the user. Adjustment of these criteria may increase the likelihood that the authorized user will be successfully authenticated in the new attempt.
US11693936B2
A system is described for authenticating a user on a client device using the user's mobile device and utilizing the audio channel. An authentication server receives a request from the client to initiate a session for the user, creates the session, and sends a session token back to the client along with a request for authentication. The client broadcasts an audio transmission containing the token to the mobile device over an audio channel using data-over-sound transmission. The mobile device receives the transmission via a microphone, obtains the token and the server identity from the transmission, and sends user credentials that are stored on the mobile device along with the token identifying the session directly to the authentication server. The server verifies the received credentials, confirms the token, and logs the user into the session.
US11693935B2
Disclosed and described herein are systems and methods that bring together edge technologies into a single, streamlined process that automates the tracking and usage of assets (containers, equipment, mobile storage, etc.). These systems and methods include the use of smart beacons, low power cellular, sensors (strain gauges, level, contact, ohm/voltage, etc.), voice, video, microcontroller advancements, and the like. Conventional systems that have electronic service order and/or tickets are still limited in their functionality because of data, communication and processing hurdles. Disclosed are modern electronic data capture systems (IoT sensors) along with algorithms to assist on the tracking of assets and workers, more quickly capture authorized transactions for billing and remove the manual processes.
US11693932B2
Techniques for managing activation of software, e.g., an operating system, in an information processing system are provided. For example, a method comprises the following steps. A data object is obtained for a system having an un-activated computer program stored thereon. The data object comprises information about the system encrypted by a private value. The method then causes the data object to be securely stored on a distributed ledger for subsequent access during a process to activate the computer program.
US11693930B2
A computational instance of a remote network management platform may execute a remote access call for a license consolidation server. The remote access call may contain instructions for obtaining concurrent license usage statistics from the license consolidation server. In response to obtaining the concurrent license usage statistics, the computational instance may update a software configuration with the concurrent license usage statistics, where the software configuration contains a license rights allocation for the concurrent software application. Based on the concurrent license usage statistics and the license rights allocations, the computational instance may generate a representation of a graphical user interface that contains an overview pane indicating a utilization of the concurrent software application. Then the computational instance may transmit, to a client device, the representation of the graphical user interface.
US11693925B2
Aspects of the present invention disclose a method for a distance-based vector classification in anomaly detection. The method includes one or more processors identifying one or more audio communications from a first user to a second user, wherein the one or more audio communications is transmitted utilizing a first computing device. The method further includes determining an objective of the first user based at least in part on the audio communication of the first user. The method further includes determining a set of conditions corresponding to the one or more audio communications and the objective, wherein the set of conditions indicate a vulnerability of personal data of the first user. The method further includes prohibiting the first computing device from transmitting audio data that includes the personal data of the first user.
US11693923B1
A computerized task automation system operates to permit automation of processes comprising one or more computer implemented tasks. Software robots may be created and retrieved to automate human user interaction with computer systems. The software robots each take one of three forms: (i) an attended software robot that is encoded to interact with one or more application programs and to accept one or more inputs from the user as required by the one or more application programs, (ii) an unattended software robot that is encoded to automatically interact with one or more application programs without any user input; and (iii) a cognitive software robot that is encoded to automatically interact with one or more application programs without any user input and is further encoded to automatically alter its interactions with the one or more application programs by way of a machine learning engine.
US11693915B2
Interactive editing of a web application at a user end station is described. The user end station dynamically loads into a running instance of the web application an interactive editor that allows editing of one or more user interface (UI) components of that running instance of the web application. A selection of a DOM element of the web application is received and a UI component that corresponds to the selected DOM element is determined. A set of parameters associated with the determined UI component is also determined. A value editor is displayed that is configured to display for at least one of the set of parameters a value and allows for that value to be modified. A modification of at least the value of the at least one of the set of parameters is received and the running instance of the web application is updated to reflect the modified value.
US11693909B2
In some embodiments, a data server generates an open data reference specifying a location for storing report data associated with a report. To generate the report data, the data server generates a data query based on a report definition that describes how the report data associated with the report is generated. The data server executes the data query on source data to obtain the report data and causes the report data to be stored on a storage device at the location specified by the open data reference. The report data can be retrieved via a network using the open data reference for integration within a third-party application. The data server further generates updated report data by executing, on the source data, an updated data query generated based on the report definition and has the report data stored on the storage device to be replaced with updated report data.
US11693895B1
Machine data reflecting operation of a monitored system is ingested and made available for search by a data intake and query system (DIQS). Monitoring includes obtaining a subset of ordered events that are assigned to a task. In a graphical user interface on a display, a chart for the task is displayed. The chart includes an event identifier for each event of the subset of the ordered events, a confidence level value related to each event identifier of each event of the subset of ordered events, the confidence level value indicating the confidence level that the event is in the task. The chart further includes a time reference value identifying a time of each event.
US11693893B2
A method executed by a computing device includes determining a set of identigens for each query word of a query to produce sets of identigens. The method further includes interpreting the sets of identigens to produce different first and second query entigen groups. The method further includes generating an interim response based on the first and second query entigen groups. The method further includes determining a set of identigens for each updated query word of an updated query to produce updated sets of identigens. The method further includes selecting one of the first or second query entigen group based on the updated sets of identigens to produce a selected query entigen group. The method further includes generating a response entigen group utilizing the selected query entigen group and generating a response to the query utilizing the response entigen group.
US11693891B2
A computing device including a memory and a processor is provided. The memory stores processor executable instructions for an entity engine. The processor is coupled to the memory. The processor executes the entity engine to cause the computing device to model entities, which hold or classify data. The processor executes the entity engine to cause the computing device to store in the memory a list identifying each of the entities and the entities themselves in correspondence with the list. The processor executes the entity engine to cause the computing device to provide, in response to a selection input from an external system, access to the entities based on the list. The access includes providing the list to the external system, receiving the selection input identifying a first entity of the entities, and exporting the first entity from the memory to the external system.
US11693888B1
Certain aspects of the present disclosure provide techniques for intelligent grouping of travel data for review through a user interface. In one embodiment, a method for providing grouped travel data to a user interface of an application, comprises: receiving a plurality of trip records from an application running on a remote device; providing a first subset of the plurality of trip records to a prediction model; providing a second subset of the plurality of trip records to a model training module; receiving labels for each trip record of the first subset of the plurality of trip records from the prediction model; grouping the first subset of the plurality of trip records based on the received labels; and transmitting the grouped first subset of the plurality of trip records to the application running on the remote device.
US11693885B2
Embodiments may provide a cache for query results that can adapt the cache-space utilization to the popularity of the various topics represented in the query stream. For example, a method for query processing may perform receiving a plurality of queries for data and requesting data responsive to at least one query from a data cache comprising a temporal cache, wherein the temporal cache is configured to store data based on a topic associated with the data and is configured to retrieve data based on a topic, and wherein the data cache is configured to retrieve data responsive to at least one query from the computer system.
US11693879B2
Systems and methods include reception of a set of data including continuous features and a discrete feature, each continuous feature associated with a plurality of values and the discrete feature associated with a plurality of discrete values, determine, for each continuous feature, a relationship factor representing a relationship between the discrete feature and the continuous feature based on the plurality of values associated with the continuous feature and the plurality of discrete values, identify one of the continuous features associated with a largest one of the determined relationship factors, generate, for each of the other features, a correlation factor representing a correlation between the continuous feature and the identified continuous feature, determine, for each of the continuous features other than the identified continuous feature, a composite relationship score based on the relationship factor and the correlation factor associated with the feature, and present a visualization associated with the discrete feature, the identified continuous feature, and a continuous feature associated with a largest composite relationship score.
US11693871B1
An example method comprises: causing display of a user interface comprising a plurality of dynamic elements, the user interface to facilitate configuring a search frequency for metrics associated with the plurality of dynamic elements, wherein each metric represents a respective point in time or a period of time and is derived from a metric-time search of machine data associated with a respective asset node; and for each dynamic element of the plurality of dynamic elements: receiving, via the user interface, a search frequency for a metric associated with the dynamic element; and determining a value of the metric by executing, according to the search frequency for the metric, a search query associated with the dynamic element.
US11693869B1
Aspects of the disclosure relate to processing queries and commands. A computing platform may receive a command input configured in a first format. The computing platform may input the command input into a natural syntactic language processor configured to extract parameters from the command input. The computing platform may input the command input into a decision system configured to identify a command type of the command input. The computing platform may generate, using a mapping catalogue and based on the parameters and the command type, an output command formatted in a second format. The computing platform may execute, against a binary store configured in the second format, the output command to obtain results to the command input. The computing platform may send commands directing an enterprise user device to display the results, which may cause the enterprise user device to display the results.
US11693859B2
Aspects of the present disclosure disclose techniques for data retrieval. The method includes receiving, from a client device, a request defining an original structured query language (SQL) query; processing the SQL query to identify a set of search engine clauses included in the original SQL query; converting the set of search engine clauses into a search engine query; communicating the search engine query to a search engine for execution; receiving object identifiers for one or more objects that match the search engine query; generating a database query based on the received object identifiers; executing the database query; and receiving and returning results of the executed database query to the client device.
US11693856B2
A method may include generating, based at least on an analysis plan, a logical plan, the analysis plan specifying one or more operations performed on data stored in a polystore that includes a first database management system and a second database management system. The logical plan may include a sequence of logical operators corresponding to the operators specified by the analysis plan. The generating of the logical plan may include rewriting the sequence of logical operators by at least reordering, replacing, and/or combining one or more logical operators in the sequence of logical operators. Candidate physical plans may be generated based on the logical plan. The analysis plan may be executed based on a physical plan selected from the candidate physical plans. Related systems and articles of manufacture are also provided.
US11693854B2
This disclosure is provided, in which an answer generation unit configured to receive a document and a question as inputs, and execute processing of generating an answer sentence for the question by a learned model by using a word included in a union of a predetermined first vocabulary and a second vocabulary composed of words included in the document and the question, in which the learned model includes a learned neural network that has been learned in advance whether word included in the answer sentence is included in the second vocabulary, and increases or decreases a probability at which a word included in the second vocabulary is selected as the word included in the answer sentence at the time of generating the answer sentence by the learned neural network.
US11693848B2
Knowledge graph systems are disclosed for implementing multiple approaches, including stand alone or combined approaches, for knowledge graph pruning. The approaches are based on graph sampling work such as, for example, information gain theory. The approaches are applied by a knowledge graph system to perform schema pruning, automatic graph pruning, and query correlation for improving query performance.
US11693846B2
A technique for verifying data structure consistency across computing environments includes computing a first signature for a data structure of an application subject to checkpointing corresponding to a first computing environment residing on a first computer. A second signature for the data structure of the application corresponding to a second computing environment residing on a second computer is computed. The first and second signatures are compared to determine whether a change to the data structure exists. Responsive to a lack of change to the data structure based on the comparison, a mobility operation is enabled for the application between the first computer and the second computer.
US11693844B2
The disclosure herein describes processing deletion requests using sequencing numbers with change feed updates. When a deletion occurs on the source data store, a deletion notification is created in a change feed on the source server. The deletion notification includes a set of deletion record IDs identifying a set of records to be deleted, a tombstone sequence number (TSN) identifying a sequence of the deletion notification within a set of deletion notifications and/or a deletion sequence number (DSN). The DSN is incremented by one each time a new deletion notification is created. A deletion notification can represent deletion of a single record or a set of records. Each deletion notification is assigned a time-to-live (TTL) value. The deletion notification is deleted at expiration of the TTL. The TSN and the DSN entries are used to determine whether any deletion updates have been missed to prevent silent failures.
US11693838B2
Setting or verification of a monitoring rule in response to a monitoring target environment is supported. An information processing system includes a situation information receiving unit that receives an input of situation information indicating a situation in a monitoring target environment. The information processing system further includes a normal situation storage unit. The normal situation storage unit stores environment information indicating the monitoring target environment in association with a set of situation information indicating a situation that is not abnormal in the monitoring target environment. The information processing system further includes a retrieval unit. The retrieval unit refers to the normal situation storage unit upon receiving the input of the situation information indicating the information in the monitoring target environment. The retrieval unit then retrieves the environment information associated with the set of the situation information that does not include the input situation information.
US11693831B2
An embodiment may involve persistent storage including a parent filesystem and a pre-configured amount of free space within the parent filesystem that is dedicated for shared use. The embodiment may also involve one or more processors configured to, for each of a plurality of child filesystems: create a sparse file with an apparent size equivalent to the pre-configured amount of free space; create a virtual mapped device associated with the sparse file; establish one or more cryptographic keys for the virtual mapped device; create an encrypted virtual filesystem for the virtual mapped device and within the sparse file, wherein the encrypted virtual filesystem uses the cryptographic keys for application-transparent encryption and decryption of data stored by way of the encrypted virtual filesystem; and mount the encrypted virtual filesystem within the parent filesystem as one of the child filesystems.
US11693820B2
The present disclosure provides a cooperative access method, system, and architecture of an external storage. The method includes: pre-storing image compression configuration information and image decompression configuration information corresponding to an access address of a read and write operation of an image processing device; compressing an image data and storing the compressed data to an external storage based on an access address of a write operation of an image processing device and the image compression configuration information; decompressing the compressed data and sending the decompressed data to the image processing device based on an access address of a read operation of the image processing device and the image decompression configuration information, which compresses the image data and stores it in the external storage, decompresses compressed data and returns it to the image processing device, thereby reducing the space requirements for external storage, which improves the overall system performance.
US11693819B2
A technique for data sharing among multiple filers that share a volume in a private or public cloud object store is implemented. In this approach, a mechanism is provided to enable a local filer to determine whether other filers that are sharing the volume have a consistent view of new data being written to the cloud object store by the local filer. The begins by associating together a collection of one or more files in a “push class.” On demand, a push operation for the push class is initiated on the local filer. Preferably, the push is managed according to one or more push criteria associated with the push class. Typically, the push operation pushes file data and metadata associated with the one or more files of the push class in respective phases, with the file data being pushed to the cloud during a first phase and the metadata associated with that file data being pushed during a second phase that follows the first phase. After the push operation completes, a determination is made whether the new version of the file is available at one or more other filers that share the volume.
US11693804B2
A computerized system for efficient interaction between a host, the host having a first operating system, and a second operating system, the system comprising a subsystem on the second operating system which extracts data, directly from a buffer which is local to the host, wherein the system is operative for mapping memory from one bus associated with the first operating system to a different bus, associated with the second operating system and from which different bus the memory is accessed, thereby to emulate a connection between the first and second operating systems by cross-bus memory mapping.
US11693789B2
An illustrative embodiment disclosed herein is an apparatus including a processor and a memory. In some embodiments, the memory includes programmed instructions that, when executed by the processor, cause the apparatus to store a first object and a second object in a first region based on the first object and the second object having a first policy. In some embodiments, the memory includes programmed instructions that, when executed by the processor, cause the apparatus to store a third object in a second region based on the third object having a second policy. In some embodiments, a virtual disk includes the first region and the second region.
US11693784B2
A processing device in a memory system determines to send system state information associated with the memory device to a host system and identifies a subset of a plurality of event entries from a staging buffer based on one or more filtering factors, the plurality of event entries corresponding to events associated with the memory device. The processing device further sends the subset of the plurality of event entries as the system state information to the host system over a communication pipe having limited bandwidth.
US11693774B2
A method is described, which includes receiving, by a memory subsystem, a memory command targeted at a memory array; determining, by the memory subsystem, if the memory command is a high priority memory command; and determining if the memory subsystem is processing any non-high priority memory commands. The memory subsystem enables a read page cache mode for processing the memory command in response to determining that (1) the memory command is a high priority memory command and (2) the memory subsystem is not processing any non-high priority memory commands Thereafter, the memory subsystem processes the memory command using the read page cache mode.
US11693773B2
A solid state drive (SSD) is presented herein that includes a plurality of memory dies communicatively arranged in a plurality of communication channels such that each respective memory die is associated with a respective one communication channel of the plurality of communication channels, each respective memory die comprises one or more die regions, and each of the one or more die regions comprises a plurality of physical blocks configured to store data. The SSD further includes a memory controller communicatively coupled to the plurality of memory dies. The memory controller is configured to, upon a first power up of the SSD, determine a parameter of the SSD and for each of the one or more die regions, associate, based on the parameter, a number of physical blocks of the plurality of physical blocks with a block region of a plurality of block regions.
US11693766B2
A method for adjusting the resource allocation ratio between microservices used to run an application. A microservice test sequence is defined which has an order that follows the traffic flow through the microservices. Each microservice is analyzed in order of the test sequence to classify whether or not it is acting as a bottleneck for the application. This is done by measuring whether or not decrementing the microservice's resource causes the application throughput to decrease. For each microservice classified as a bottleneck and in reverse order of the test sequence, its resource is successively incremented until the application throughput starts to increase, indicating it is no longer acting as a bottleneck. The resource allocation ratio can then be adjusted to reflect this procedure.
US11693765B2
Systems, methods, and computer-readable media are disclosed for unified regression testing. A first set of inputs configured to test a first scenario and a second set of inputs configured to test a second scenario may be received from a user. The first set of inputs may be used to generate a first set of outputs, and the second set of inputs may be used to generate a second set of outputs. A software update may be received. The first set of outputs may be regenerated using the first set of inputs, and the second set of outputs may be regenerated using the second set of inputs. The regenerated first set of outputs may be compared against the first set of outputs, and the regenerated second set of outputs may be compared against the second set of outputs. The comparison results may then be displayed to the user.