US10735261B2
Methods of upgrading a mesh network device reduce the amount of memory required on such devices. A network device may identify a neighbor network device in response to receiving a request to perform an upgrade, and send a message configured to cause the neighbor network device to function as a recovery node. The network device may then perform the upgrade without retaining a backup image in memory. If the neighbor network device determines that the upgrade failed based on messages not received from the mesh network device being upgraded, the neighbor network device may recover the network device being upgraded by providing a file corresponding to the upgrade. The neighbor network device may determine that the upgrade failed if no response is received to a challenge message or if no indication of success is received after a time expires.
US10735256B2
A system and method of deploying operating environments in an enterprise computing environment comprised of managed virtual or hardware servers is disclosed. A library of operating environments, each environment including at least one package including an operating system image and an application, is provided. A user controlling a cluster of servers may request creation of a test environment using an operating environment from the library, and test the environment with applications to ensure the user's needs are met. The user may request all servers within the user's cluster be provisioned with the operating environment through a deployment manager.
US10735253B2
An alarm information reporting method and apparatus are provided. The method is applied to an NFVI. A monitor is arranged at an NFVI hardware layer, a software layer includes a VNF virtual machine, and a monitor, an alarm classifier, and a virtual machine manager are arranged at the software layer. The method includes: detecting, by the monitor, physical resource alarm information and sending the physical resource alarm information to the alarm classifier; obtaining, by the alarm classifier, virtual machine information from the virtual machine manager based on the physical resource alarm information and sending the physical resource alarm information to an analog processor corresponding to the virtual machine information; and obtaining, by the analog processor, virtual resource alarm information based on the physical resource alarm information and reporting the physical resource alarm information and the virtual resource alarm information to a VNF in a virtual machine.
US10735248B2
A computer-implemented method of routing protection is provided comprising: receiving, by one or more processors of an active network element from a remote peer device, a plurality of data packets; sending, by the one or more processors of the active network element to a plurality of standby network elements, a multicast data packet comprising combined data of the plurality of data packets; receiving, by the one or more processors of the active network element from at least one of the standby network elements, an acknowledgment of receipt of the multicast data packet; and in response to the receipt of the acknowledgment, sending, by the one or more processors of the active network element to the remote peer device, an acknowledgment of receipt of the plurality of data packets.
US10735240B2
Preempting a slot with a mini-slot for use in a wireless transmitter of a wireless communication network is presented. The method includes preempting a slot transmission to a wireless receiver with a mini-slot transmission to the wireless receiver, wherein the slot transmission comprises a plurality of time-frequency regions (TFRs), each TFR comprising a plurality of sub-regions. The method further includes transmitting a preemption indication to the wireless receiver, where the preemption indication includes a TFR position in time of one or more preempted TFRs in the slot transmission, a TFR position in frequency of the one or more preempted TFRs in the slot transmission and an identifier of one or more of the plurality a sub-regions of the one more preempted TFRs.
US10735238B1
A filter bank multicarrier communication system is proposed. The system adopts the real-valued discrete Hartley transform for both multicarrier modulation and demodulation, rather than the complex-valued inverse discrete Fourier transform for multicarrier modulation and the discrete Fourier transform for multicarrier demodulation in conventional filter bank multicarrier schemes, so as to reduce implementation complexity and to enhance system performance.
US10735234B2
A method includes: determining a Cyclic Shift (CS) parameter that implicitly indicates an orthogonality allocation rule and orthogonality-related information, by determining a multiple access state of a User Equipment (UE), and transmitting the determined CS parameter to the UE, wherein the orthogonality-related information includes an Orthogonal Cover Code indicated by the CS parameter, the orthogonality allocation rule is determined as a uniform scheme or a non-uniform scheme according to the CS parameter, determining the CS parameter by which the non-uniform scheme is applied if the UE is in a Single User Multiple Input Multiple Output state, and determining the CS parameter by which the uniform scheme is applied if the UE is in a Multiple User Multiple Input Multiple Output state.
US10735230B2
A transmitter in a first wireless communication device and method therein are disclosed. The transmitter comprises a modulator and a rate selector configured to select a data rate. The rate selector comprises an input configured to receive input bits and an output to provide the bits with the selected data rate. The transmitter further comprises a bit to symbol mapper configured to receive the bits from the rate selector and map the bits to symbols of an arbitrary alphabet. The transmitter further comprises a spreading unit configured to spread the symbols received from the bit to symbol mapper to a chip sequence by means of a spreading code. The transmitter further comprises a re-mapping unit configured to map the chip sequence received from the spreading unit to produce signals for providing to the modulator.
US10735229B1
In general, techniques are described for limiters used in wireless transmitters. A transmitter comprising a frontend circuit and a backend circuit may perform various aspects of the limiter techniques. The frontend circuit may obtain a data symbol of a plurality of data symbols representative of data to be transmitted wirelessly, and determine an amplitude and a phase representative of the data symbol. The frontend circuit may also transform the phase to a frequency, compare the frequency to a threshold frequency, and adjust, based on the comparison of the frequency to the threshold frequency, the frequency to obtain an adjusted frequency. The backend circuit configured may obtain, based on the amplitude and the adjusted frequency, a wireless signal, and transmit the wireless signal.
US10735226B2
A method and a transmitter for transmitting a pay load sequence are provided. The transmitter includes a ternary sequence mapper configured to map a binary data sequence to a ternary sequence stored in the transmitter, and a pulse shaping filter configured to generate a first signal based on the mapped ternary sequence. The ternary sequence includes elements of −1, 0, and 1.
US10735225B2
The present disclosure relates to a communication method and system for converging a 5G communication system for supporting higher data rates beyond a 4G system with an IoT technology. The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure can reduces a peak-to-average power ration (PAPR) by performing time domain cyclic filtering. Further, a data rate or coverage can be improved by selectively transmitting transmission waveforms through cyclic prefix (CP)-orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform-spread-OFDM (DFT-s-OFDM).
US10735224B2
A method, device, and a computer program are provided to decode a signal received through a transmission channel in a communication system, the received signal being represented by a signal vector. The method comprises: calculating an initial estimate of a transmitted symbol vector carried by the received signal vector; calculating a bound parameter (201) from a linear function of the initial estimate of the transmitted symbol vector, the linear function being defined by a slope coefficient and an intercept coefficient, the method further comprising: determining estimated symbols representative of the transmitted symbols carried by the received signal, the estimated symbols being determined from a set of candidate lattice points, each lattice point comprising a set of components, each component of a candidate lattice point being searched in a search interval (203), the search interval having at least one search interval bound computed from the bound parameter; determining (205) the estimated symbols from the closest lattice point to the received signal vector among the candidate lattice points.
US10735215B2
A method for determining an operation to be performed for an object identified by a device, and an apparatus therefor are disclosed. In one embodiment, the method includes generating representative identification information of the terminal, transmitting, to a server, user information including the representative identification information of the terminal, and advertising the representative identification information of the terminal. According to another embodiment, a service receiver and a service provider can use all available services even while minimizing requirements that must be fulfilled. The present disclosure may be directed to a technology for a sensor network, machine to machine communication, machine type communication and Internet of things. The present disclosure may be applied to intelligent services (related to a smart home, a smart building, a smart city, a smart car or a connected car, healthcare, digital education, retail business, security, safety, and the like) on the basis of the technology.
US10735213B2
A system including a digital component request server that receives digital component requests for a supplemental digital component that will be presented in an additional multicast stream that is different to a multicast stream that is delivering content; a digital component distribution server that i) selects supplemental digital components to distribute over the additional multicast streams, the supplemental digital components being selected for one of the additional multicast streams being different to the supplemental digital component selected for each of the other additional multicast streams, and that ii) assigns one group of a plurality of groups of the multiple client devices to a respective one of the additional multicast streams; and an instruction generation server that generates instructions for the multiple client devices to tune to the respective additional multicast streams assigned to the group of multiple client devices that includes the different client device that submitted the request.
US10735211B2
A meeting insight computing system includes a meeting evaluation machine configured to collect quality parameters from meeting quality monitoring devices. The quality parameters each quantify meeting conditions during one or more previously-elapsed meetings and are usable to determine an overall quality score for each of the one or more previously-elapsed meetings. A graphical scheduling interface is configured to facilitate scheduling of an upcoming meeting at a designated meeting time, in a meeting location, and with one or more meeting participants. An insight generation machine is configured to report a meeting insight via the graphical scheduling interface. The meeting insight is based on the meeting time, the meeting location, the one or more meeting participants, and the quality parameters, and includes a recommendation to change one or more of the meeting time, meeting location, and meeting participants to improve a quality score of the upcoming meeting.
US10735209B2
Disclosed are technologies for optimally utilizing 5G-NSA network resources via an Aggregate Maximum Bitrate (AMBR) feedback mechanism. A User Equipment (UE) is registered with a 5G-NSA network environment and a 5G AMBR is negotiated. A bearer-specific timer is triggered in response to detecting one or more data flows to the UE. Next, a Secondary Radio Access Technology (RAT) Data Usage Report is monitored for. In response to the bearer-specific timer expiring without a Secondary RAT Data Usage Report being received, it is determined that the UE is not currently being served by a 5G RAT. Subsequently, local rate limiting is performed to reduce the negotiated 5G AMBR to a limited AMBR having a lower bitrate than the negotiated 5G AMBR. The UE connection to the 5G-NSA network environment is then configured with the limited AMBR.
US10735206B2
Data in vehicle networks has been treated as proprietary assets, due to car makers' concern of potential IP infringement via extraction of confidential vehicular data. To address this concern, an intermediate gateway in between internal and external networks translates proprietary in-vehicle data to rich type data, thus preventing the exposure of raw in-vehicle data. The translation relies solely on the gateway which can be a direct target of cyberattacks, making it difficult to trust the data through the gateway. This, in turn, requires authentication of the translated data. A communication protocol is presented that provides secure communications between the vehicle's internal components and external entities. The protocol enables authorization of external servers for in-vehicle ECUs as well as authentication and proof of messages between internal and external components to combat a compromised gateway.
US10735203B2
In an example embodiment, a validating peer of a plurality of validating peers in a blockchain network receives, from a non-validating peer, a request to create a root block of a blockchain. The root block includes information related to a potential computer security threat. The validating peer creates the root block with a root block pending validation status. The validating peer shares, with other validating peers of the plurality of validating peers, a notification of the root block with the root block pending validation status to provide an indication of the information. The validating peer determines whether the information is authentic. If the information is determined to be authentic, the validating peer changes the root block pending validation status to a root block authenticated validation status and shares, with the other validating peers, a notification of the root block authenticated validation status to indicate that the information is authentic.
US10735200B2
Methods and systems for key generation and device management are disclosed. A root key can be stored on a component which can be integrated with a device, and the component can store a product class identifier. The product class identifier can define a class of products, devices, features, hardware components, or other entities. One or more keys can be generated and stored on the devices based on the product class identifier and the root key. A network operator or service provider can then provide services to a class of devices that includes the device, or perform and manage other functions. The services can be authorized or otherwise implemented based on the one or more new keys stored at the devices within the class of devices.
US10735199B2
Embodiments of the invention are directed to a system, method, or computer program product for file transmission validation and failure location identification. The invention provides a cryptographic hashing function to generate a unique hash for each block in a file being transmitted. The hash from the previous block is included along with the contents of the next block to create the hash for the next block. Similarly the hash from the previous blocks is used with the data of that block to generate the hash forming onto a block chain. The files can only be transmitted to a select group of servers forming a private block chain network within the entity server systems after the files are transmitted to the target location. As such, the system can recalculate the hashes and match hash blocks to identify an exact file location of a transmission failure.
US10735197B2
An embodiment herein provides a processor implemented method for blockchain-based secure credential and token management for open identity management that enables a first device to provision at least one additional device to present tokens issued to the first device, that includes i) creating, using a hardware-based cryptographic processor on a first device associated with an end user, a first set of credentials; ii) obtaining and caching at least one attestation token from one or attestation issuing parties, the at least one attestation token is restricted by default to be unusable from any device other than the first device; (iii) providing the at least one attestation token to at least one relying party that is interested in receiving attestations about the end user; and iv) signing a trust record on the blockchain using the first device associated with the end user.
US10735189B2
The present disclosure relates to exchanging data for multi-party computation. In some aspects, a server generates a first random number set, a second random number set, a third random number set, and a fourth random number set based on a first random seed, a second random seed, a third random seed, and a fourth random seed, respectively. The sever generates a fifth random number set and a sixth random number set, respectively, based on the first random number set, the second random number set, the third random number set, and the fourth random number set. The random numbers in the random number sets satisfy a predetermined condition. The server sends the first random seed, the second random seed, and the fifth random number set to a first device. The server sends the third random seed, the fourth random seed, and the sixth random number set to a second device.
US10735176B1
A data transmission link includes a transmitter superpositioning a data signal and a clock signal to generate a first signal. The transmitter transmits the first signal, through a link, wherein, the clock signal has a frequency equal to or higher than a Nyquist frequency of the data signal.
US10735172B2
A communication device of handling a channel status information (CSI) report for an unlicensed serving cell comprises a storage unit for storing instructions and a processing means coupled to the storage unit. The processing means is configured to execute the instructions stored in the storage unit. The instructions comprise determining an indication for indicating a validity of an unlicensed CSI (U-CSI) report; and transmitting the indication to a network.
US10735170B2
The present invention provides an HARQ-ACK feedback method and device. User equipment of the present invention detects downlink grant downlink control information and performs HARQ-ACK feedback for downlink data corresponding to the downlink control information. The user equipment processes HARQ-ACK for downlink data as a discontinuous transmission (DTX), when there is interference or noise exceeding a threshold value in the downlink data. Therefore, the user equipment can be prevented from receiving the downlink data having a different redundancy version.
US10735166B2
A method and system for operating a user equipment (UE) wherein a first set of radio access procedures are supported when the UE is in a first operating state, and a second set of radio access procedures are supported when the UE is in a second operating state.
US10735164B2
A data transmission method, includes: a terminal performs, when the terminal performs transmission of same data with both a first base station accessed by the terminal and a second base station accessed by the terminal, transmission of to-be-transmitted data of the terminal with the first base station by using a first logical channel; and perform, transmission of the to-be-transmitted data with the second base station by using a second logical channel, where the first logical channel and the second logical channel are associated with a same radio bearer of the terminal. Therefore, reliability of a radio link is improved, and a latency of data transmission is reduced.
US10735153B2
A method for a base station for transmitting a downlink signal in a wireless communication system according to one embodiment of the present invention comprises the steps of: modulating, of a codeword of a first terminal, a first part by means of a first modulation and coding scheme (MCS) and a second part by means of a second MCS; and transmitting the modulated codeword to the first terminal, wherein the second part of the codeword is transmitted along with a signal of a second terminal from the same resource on the basis of the non-orthogonal multiple access (NOMA) method, and the second MCS for the second part, transmitted on the basis of the NOMA method, has a lower modulation order than the first MCS for the first part.
US10735117B2
Techniques described herein permit a narrowband Internet of Things (NB-IoT) user equipment (UE) to combine narrowband reference signals (NRS) with other signals, which the NB-IoT UE already receives, to improve measurement accuracy. These other signals may require different modifications to be combined with the NRS depending on the type of signal. Techniques described herein provide indications of how the UE is to combine different types of signals with an NRS in order to improve measurement accuracy.
US10735112B2
A method for estimating the electric field strength associated to a radio wave emitted by an electromagnetic source of a cellular radio communication network within an area. The method includes: identifying a set of obstacles; determining at least one of: a direct visibility polygon of points in line of sight with the source; a reflection visibility polygon of points reachable by the wave after reflection by the obstacles; a diffraction visibility polygon of points reachable by the wave after diffraction by the obstacles. The visibility polygons are associated to respective values of the electric field computed therein. The method further includes: subdividing the area into pixels; for each pixel, determining if it belongs to at least one of the visibility polygons; and in the affirmative, determining the electric field strength at the pixel as a value proportional to the electric field computed at the at least one visibility polygon.
US10735108B2
In embodiments of the present disclosure, weighting on a direct current component coefficient dci′ of an I-channel signal and a direct current component coefficient dcq′ of a Q-channel signal is performed based on spatial leakage factors k1 and k2 of a microwave chip and a current attenuation amount of a tunable attenuator, to determine a corrected direct current component coefficient dci of the I-channel signal and a corrected direct current component coefficient dcq of the Q-channel signal, and a direct current component superimposed to the I-channel signal of the microwave chip and a direct current component superimposed to the Q-channel signal of the microwave chip are respectively determined based on the corrected direct current component coefficient dci of the I-channel signal and the corrected direct current component coefficient dcq of the Q-channel signal.
US10735103B2
A reception device 20 is configured to include a separation means 21 and a plurality of optical reception means 22. Each optical reception means 22 further includes an optical/electrical conversion means 23, a reception coefficient computation means 24, and a band restoration means 25. The separation means 21 separates a multiplexed signal into which signals of respective channels to which spectral shaping that narrows bandwidth to less than or equal to a baud rate is applied as band narrowing filter processing on the transmission side, based on characteristics of a transmission line are multiplexed at spacings less than or equal to the baud rate. Each band restoration means 25 applies processing having inverse characteristics to those of the band narrowing filter processing to a reception signal, based on the band narrowing parameter acquired by the reception coefficient computation means 24 and thereby restores the band of the reception signal.
US10735101B2
A method of manufacturing an optical communication device includes preparing first and second pre-defined break lines in a carrier wafer. A first sub-mount is positioned near the first break line to accommodate an optical laser and a second sub-mount is positioned near the second break line to accommodate an optical modulator. The first sub-mount is secured to a thermally conductive and electrically nonconductive spacer which is secured to a thermo-electrical cooler that defines a gap between the first submount and the thermo-electrical cooler. A portion of the carrier wafer between the sub-mounts is removed.
US10735097B2
A full duplex communication network includes an optical transmitter end having a first coherent optics transceiver, an optical receiver end having a second coherent optics transceiver, and an optical transport medium operably coupling the first coherent optics transceiver to the second coherent optics transceiver. The first coherent optics transceiver is configured to (i) transmit a downstream optical signal at a first wavelength, and (ii) simultaneously receive an upstream optical signal at a second wavelength. The second coherent optics transceiver is configured to (i) receive the downstream optical signal, and (ii) simultaneously transmit the upstream optical signal. The first wavelength has a first center frequency separated from a second center frequency of the second wavelength.
US10735088B2
An example machine accessible medium having instructions stored thereon that, when executed, causes a machine to at least command a first actuator to move to a first corrected stroke position and a second actuator to move to a second corrected stroke position to point a payload at a target along a line of sight vector without verifying a target pointing direction of a base when the first and second actuators are positioned to the respective first and second corrected stroke positions and without using a feedback to verify the base being at the target pointing direction when the first and second actuators are positioned to the respective first and second corrected stroke positions.
US10735086B2
A communications system is provided. The communications system comprises: at least one wideband remote radio system each of which is configured to be coupled to at least one antenna; a baseband system coupled to each of the at least one wideband remote radio system; wherein at least one wideband remote radio system and the baseband system are in different locations of a vehicle; wherein the baseband system comprises a datalink communications management system and an audio processing system; and wherein the at least one wideband radio baseband system is coupled to the audio processing system and the datalink communications management system.
US10735083B2
According to an embodiment, a communication repeater device includes storage and a controller which detects, upon receiving a radio frame including pairs of orthogonal frequency division multiplexing symbols and cyclic prefixes from the radio base station, switching timing between uplink and downlink according to similarity between certain sections of an original radio frame and a time-shifted radio frame. The controller estimates the subsequent switching timing between the uplink and the downlink from the detected switching timing and frame information stored in the storage.
US10735079B2
A plurality of distributed transceivers in a mobile entity such as a car, a truck, an omnibus (bus), a trailer, a mobile home, train, bus, a forklift, construction equipment, a boat, a ship, and/or an aircraft, and/or one or more corresponding antenna arrays that are communicatively coupled to the distributed transceivers are configured to handle communication of one or more data streams among one or more of a plurality of wireless communication networks, one or more other mobile entities and/or one or more mobile communication devices. The data streams may be communicated utilizing the configured one or more of the plurality of distributed transceivers and/or the one or more corresponding antenna arrays. The wireless communication networks includes a satellite network, a wireless wide area network, a wireless medium area network, a wireless local area network, a wireless personal area network, a network cloud and/or the Internet.
US10735077B2
Machine-readable media, methods, apparatus and system for beam acquisition in a wireless system are disclosed. In some aspects, a base station may include a transceiver configured to map beam reference signals onto a plurality of transmission beams. The base station may further include a control module configured to divide the transmission beams into a plurality of groups, based at least in part on a plurality of logical indexes assigned to the transmission beams. The control module may be further be configured to divide the transmission beams of each of the groups into a plurality of sub-groups. The control module may be further configured to change a transmission beam order in at least one of the groups, in order to equalize and maximize logical index differences between transmission beams, which are adjacent to one another in a respective sub-group.
US10735076B2
System and method for uplink precoding in a communication system. In one embodiment, an apparatus is operable in a communication system and includes processing circuitry configured to identify an antenna element of a user equipment to disregard for uplink precoding, and provide an instruction to direct the user equipment to remove an antenna port associated with the antenna element from a codebook employed by the user equipment to precode a communication within the communication system.
US10735071B2
A channel state information receiving method, a channel state information feedback method, a device, a base station and a terminal are provided. It is related to telecommunication field. The receiving method includes: obtaining group identifiers of groups into which multiple terminals having accessed to a base station are classified; transmitting a triggering signaling to one group of terminals having an identical group identifier; and receiving, on a pre-configured resource block, pieces of channel state information respectively fed back by the group of terminals having the identical group identifier in response to the triggering signaling. With the above technical solution, consumption of downlink signalings of the base station can be reduced and feedback efficiency of channel state information can be improved.
US10735068B2
An interaction method and communication device are provided. An interaction method comprises: sending multiple different signals by a communication device, wherein the signals have different coverage areas, at least determining at least two signals in the multiple different signals received by another communication device, and at least according to the at least two signals, executing a corresponding command. An interaction solution is thereby provided.
US10735064B2
A method for determining a precoding matrix indicator, user equipment, and a base station are disclosed in embodiments of the present invention. The method includes: receiving a first reference signal set sent by a base station, where the first reference signal set is associated with a user equipment-specific matrix or matrix set; selecting a precoding matrix based on the first reference signal set, where the precoding matrix is a function of the user equipment-specific matrix or matrix set; and sending a precoding matrix indicator to the base station, where the precoding matrix indicator corresponds to the selected precoding matrix. In the embodiments of the present invention, CSI feedback precision can be improved without excessively increasing feedback overhead, thereby improving system performance.
US10735054B2
According to various embodiments, an electronic device comprises a short range communication circuit; and a processor, wherein the processor is configured to: establish a communication channel with a first external electronic device by using a designated communication scheme, through the short range communication circuit; transmit information related to the communication channel to a second external electronic device through the short range communication circuit; receive a request to transfer communication rights with the first external device to the second external device; and transfer communication rights with the first external device from the electronic device to the second external electronic device.
US10735039B1
In one embodiment, a transmission system includes a transmitter, a receiver, and a filter operable at one of the transmitter and the receiver to remove channel impairments. The filter is operable according to a sum of a Gaussian function and a reciprocal of cosine function, wherein the Gaussian and reciprocal of cosine functions comprise tunable parameters to account for skew and channel asymmetry.
US10735037B2
Tunable filters, cancellers, and duplexers based on passive mixers. A tunable delay cell includes passive mixers electrically coupled together for receiving an input signal and outputting a delayed signal, each passive mixer comprising a plurality of mixer switches. The tunable delay includes a control circuit for providing, to each passive mixer, a respective plurality of local oscillator (LO) signals, one to each mixer switch of each passive mixer. The control circuit is configured to vary the LO signals to cause a target frequency band of the input signal to be delayed by a target delay time in propagating through the passive mixers.
US10735013B2
A time-interleaved digital-to-analog converter system, comprising a digital pre-distorter configured to receive an input digital signal and an error signal and output a distorted digital signal based on the input digital signal and the error signal; a time-interleaved digital-to-analog converter having a first sample rate, the time-interleaved digital-to-analog converter configured to convert the distorted digital signal to an analog signal; and a calibration system. The calibration system includes an analog-to-digital converter having a second sample rate equal to or lower than the first sample rate, the analog-to-digital converter configured to receive the analog signal and covert the analog signal to a down-sampled digital signal, a discrete-time linear model configured to receive the input digital signal and the error signal and output a model signal, and a combiner to subtract the down-sampled digital signal from the model signal to generate the error signal.
US10734998B1
Systems, methods, and apparatus for complementary self-limiting logic are disclosed. In one or more embodiments, a method for mitigating errors caused by transients in a logic gate transistor comprises biasing, by a first stage of transistors, a second stage of transistors such that a voltage potential across terminals of each of the transistors of the second stage are at an equal voltage potential. The method further comprises biasing, by the second stage of transistors, the logic gate transistor such that a voltage potential across terminals of the logic gate transistor are at an equal voltage potential, thereby ensuring that the transients will not cause the logic gate transistor to erroneously change logic states when the logic gate transistor is in a logically off state.
US10734994B2
A gate control circuit includes: a transition time detection circuit configured to detect a transition time of a drain voltage of a switching transistor that is turned ON or OFF by a gate voltage corresponding to a first pulse signal and a second pulse signal; an error detection circuit configured to output an error voltage representing a difference between the transition time and a target transition time being predetermined; and a transition time control circuit configured to generate the second pulse signal on the basis of the error voltage and the first pulse signal corresponding to an input signal that instructs ON or OFF of the switching transistor.
US10734988B2
Apparatus, methods and systems to produce a protection voltage are disclosed. The apparatus includes circuitry to deliver a first supply voltage to a plurality of circuits, where the first supply voltage has a first magnitude, circuitry to deliver a second supply voltage to a part of the plurality of circuits, where the second supply voltage has a second magnitude, and circuitry to deliver a protection voltage to the part of the plurality of circuits when the second supply voltage is LOW and the first supply voltage is HIGH. The protection voltage has a magnitude that is a fraction of the magnitude of the first supply voltage. The apparatus includes circuitry that causes the delivery of the second supply voltage to the part of the plurality of circuits when the second supply voltage is turned HIGH subsequent to the second supply voltage being LOW when the first supply voltage is HIGH.
US10734987B2
A radio frequency, RF, switch device includes a plurality of switch units, wherein the switch units are coupled in series between a first series terminal and a second series terminal to establish a switchable RF path; and a plurality of ballasting capacitor units, wherein each ballasting capacitor unit is coupled in parallel to a respective switch unit, to provide a selectable capacitance in parallel to a signal path of the respective switch unit, wherein each ballasting capacitor unit includes at least one ballasting capacitor switch element to switch the capacitance of the ballasting capacitor unit between a first capacitance value and a second capacitance value, wherein the second capacitance value is larger than the first capacitance value.
US10734985B2
In certain aspects, a comparator includes a first inverter having an input, an output, and a voltage supply input, wherein the input of the first inverter and the output of the first inverter are coupled together, and the voltage supply input of the first inverter is configured to receive a first compare voltage. The comparator also includes a second inverter having an input, an output, and a voltage supply input, wherein the input of the second inverter is coupled to the output of the first inverter, and the voltage supply input of the second inverter is configured to receive a second compare voltage.
US10734981B1
A method for generating a periodic ramp waveform may include in a sampling phase of each period of operation of a ramp-generation circuit, sampling a reference voltage onto a sampling capacitor. The method may also include in a transfer phase of each period of operation of the ramp-generation circuit: discharging the reference voltage from the sampling capacitor through at least one resistor to generate a current and generating the periodic ramp waveform by integrating the current with at least one integrating capacitor, wherein a duration of the transfer phase is significantly smaller than a time constant defined by a capacitance of the sampling capacitor and a resistance of the at least one resistor, such that the reference voltage discharges linearly from the sampling capacitor as a function of time during the transfer phase.
US10734980B2
A system, method, and apparatus for pulsed charging applications comprises a bulk capacitor operably connected to a power source, an inductor connected to the bulk capacitor with a charge switch, a pulse capacitor connected to the inductor, a freewheeling diode connecting a point between the charge switch and the inductor to a point after the pulse capacitor, a second diode connecting the inductor to the pulse capacitor, and a pulse switch connecting the pulse capacitor to a load.
US10734979B1
Embodiments of the present disclosure provide a circuit structure including four FDSOI transistors coupled to a single output node at their respective back-gate terminals. An input voltage line may be coupled to the gate terminal of two transistors. The two transistors each may be coupled to the gate terminal of two other transistors at one of their source or drain terminals via a junction node. The other two transistors may be coupled to the single output node through one of their source or drain terminals. The other source or drain terminal of each transistor may be electrically coupled to a source voltage line or a drain voltage line.
US10734971B2
Disclosed is receiver for a noise limited system. A front-end circuit amplifies and band-limits an incoming signal. The amplification increases the signal swing but introduces both thermal and flicker noise. A low-pass band limitation reduces the thermal noise component present at frequencies above what is necessary for correctly receiving the transmitted symbols. This band limited signal is provided to the integrator circuit. The output of the integrator is equalized to reduce the effects of inter-symbol interference and then sampled. The samples are used to apply low frequency equalization (i.e., in response to long and/or unbalanced strings of symbols) to mitigate the effects of DC wander caused by mismatches between the number of symbols of each kind being received.
US10734967B2
A polyphase filter operates to provide capacitive compensation to drive a multiphase network for generating quadrature signals. The polyphase filter can include a capacitive compensation mechanism at internal nodes. The capacitive compensation mechanism includes a first phase lag circuit between a first internal node and a second internal node and a second phase lag circuit coupled between a third internal node and a fourth internal node. The first internal node is coupled to the second internal node via a first inductor coupled to a first resistor, the second internal node is coupled to the third internal node via a second inductor coupled to a second resistor, the third internal node is coupled to the fourth internal node via a third inductor coupled to a third resistor, and the fourth internal node is coupled to the first internal node via a fourth inductor coupled to a fourth resistor.
US10734965B1
Disclosed herein are example techniques to facilitate calibrating a portable playback device. An example implementation involves determining that a playback device is to perform an equalization calibration of the playback device and initiating the equalization calibration. Initiating the equalization calibration involves (i) outputting audio content, (ii) capturing audio data representing reflections of the audio content within an area in which the playback device is located, (iii) determining an acoustic response of the area in which the playback device is located, (iv) selecting a stored acoustic response from the acoustic response database that is most similar to the determined acoustic response of the area in which the playback device is located, and (v) applying to the audio content, via the playback device, a set of stored audio calibration settings associated with the selected stored acoustic area response.
US10734963B2
The various implementations described herein include methods, devices, and systems for automatic audio equalization. In one aspect, a method is performed at a computing system that includes speaker(s), microphones, processors and memory. The computing system outputs audio user content and automatically equalizes the audio output of the computing system. The equalizing includes: (1) receiving the outputted audio content at each microphone of the plurality of microphones; (2) based on the received audio content, determining an acoustic transfer function for the room; (3) based on the determined acoustic transfer function, obtaining a frequency response for the room; and (4) adjusting one or more properties of the speakers based on the determined frequency response.
US10734955B2
An audio amplifier of a BTL (Bridged Tied Load) type, includes a first amplifier, a second amplifier, a first output pin connected to an output of the first amplifier, a second output pin connected to an output of the second amplifier, a first monitor pin, a second monitor pin, a current source connected to the first monitor pin and configured to be switched on and off, a switch interposed between the second monitor pin and a fixed voltage line, and a load state determination circuit configured to detect a state of a load based on a potential difference between the first monitor pin and the second monitor pin.
US10734952B2
A power amplifier module includes a power amplifier circuit and a control IC. The power amplifier circuit includes a bipolar transistor that amplifies power of an RF signal and outputs an amplified signal. The control IC includes an FET, which serves as a bias circuit that supplies a bias signal to the bipolar transistor. The FET is operable at a threshold voltage lower than that of the bipolar transistor, thereby making it possible to decrease the operating voltage of the power amplifier module.
US10734951B2
A receiver circuit receives a signal from a semiconductor device. The receiver circuit includes an input buffer including a first plurality of transistors, the input buffer being configured to detect a fabrication condition of the receiver circuit, generate a control signal according to the detected fabrication condition, and control a gain of an input signal by adjusting a number of operating transistors among the first plurality of transistors in response to the control signal; and a latch circuit configured to latch an output signal of the input buffer, and adjust threshold voltages of a second plurality of transistors in response to a test signal.
US10734949B2
A signal conditioner for conditioning a differential oscillation signal into a compliant clock signal including first and second signal paths and a coincident gate. The first signal path toggles a first binary signal in response to the differential oscillation signal when the differential oscillation signal reaches a small amplitude level. The second signal path toggles a second binary signal in response to the differential oscillation signal only when the differential oscillation signal reaches a large amplitude level that is greater than the small amplitude level. The coincident gate toggles the clock signal high only when the first and second binary signals are both high, and toggles the clock signal low only when the first and second binary signals are both low. When the clock signal begins toggling, it may skip one or more cycles but is nonetheless compliant in terms of timing and amplitude.
US10734948B2
A crystal unit includes a package, a crystal element, and a temperature sensor. The crystal element includes a crystal blank and a pair of excitation electrodes on a pair of major surfaces of the crystal blank and is air-tightly sealed in the package. The temperature sensor is mounted in the package. The crystal blank includes a crystal plane inclined relative to the major surfaces in at least a portion of the side surfaces.
US10734937B2
A system for flashing a mount of a photovoltaic assembly on a surface includes a flashing with a lower surface and an upper surface. The flashing defines an opening to receive a fastener for securing the mount to the surface. The system also includes a seal extending around the fastener when the fastener is positioned in the opening. The seal provides a first barrier to inhibit water intrusion through the opening. The system further includes a pad attached to one of the lower surface and the upper surface, wherein the pad provides a second barrier to inhibit water intrusion through an interface of the flashing and the surface.
US10734935B2
A method is provided for controlling a transition between over-modulation and six-step pulse width modulation (PWM) modes in an electrical system having a polyphase electric machine driven by a polyphase output voltage of a power inverter. The method includes receiving input values via a PWM controller, including a holding angle, rotational speed of the electric machine, and present voltage angle of the power inverter. The method includes calculating a future voltage angle of the inverter using the input values and adjusting pulse widths of a baseline PWM pulse train based on a duty cycle of the power inverter. The power inverter output voltage is controlled during the transition using the adjusted baseline PWM pulse train, such that the transition is continuous. An electrical system includes the power supply, power inverter, electric machine, and the PWM controller, the latter of which is configured to execute the method.
US10734932B2
A motor controller that controls a motor in which a rotor using a permanent magnet is rotated by a rotating magnetic field due to a current flowing through a winding: performs hold control that continuously causes a fixed excitation current to flow through the winding to cause a fixed magnetic field for suppressing rotation of the rotor to be generated in a suspension period in which the motor is stopped; performs hold enhancement control that enhances the fixed magnetic field with input of a timing signal defined in advance as a trigger, in the suspension period; and starts rotational excitation control that generates the rotating magnetic field when a rotation start timing arrives.
US10734931B2
As a configuration of carrying out a turning operation of a brushless synchronous power generation apparatus, there are provided a synchronous generator, an AC exciter, a rotary rectifier attached to an armature of the AC exciter, and short-circuiting means which three-phase short-circuits armature windings of the AC exciter, wherein the armature windings of the AC exciter are short-circuited, causing the AC exciter to operate as an induction motor, thus rotating the rotor shaft of the synchronous generator.
US10734929B2
An H-bridge device and an associated method for controlling an H-bridge, driving a load such as a DC current electric motor, configured to prevent any reversal of polarity in the load in an unloading phase of said load, without having to limit use of the pulse generator supplying said H-bridge in terms of duty cycle. The H-bridge device includes independent comparators and independent slope control at each of the switches of the H-bridge. Furthermore, according to one aspect, the device includes ‘push-pull’ drivers imposing the potential VBAT/2 at the connection points OUT0, OUT1, on either side of the load, in order to limit electromagnetic interference.
US10734928B1
A signal conditioning apparatus includes a timing extractor to received one or more stepper motor drive signal and convert each into a corresponding virtual quadrature trigger signal. A resolution scaler is coupled to an output of the timing extractor to scale the virtual quadrature trigger signals to adjust the transition frequency, thereby adjusting the resolution of an image captured by a camera receiving the trigger signals to be different than the print resolution created by the motor drive signals. A quadrature decoder is coupled to the output of the resolution scaler, wherein the quadrature decoder extracts timing and direction information from the virtual quadrature trigger signals received from the resolution scaler.
US10734921B2
A system comprises a power generator for generating electrical power and a switched capacitor converter for down-converting the output voltage of the power generator. The switched capacitor converter comprises a bank of capacitors and a switch arrangement. A controller is used for controlling the switches, based on a feedback signal from the power generator. This provides automatic control of the switched capacitor converter, thereby simplifying the overall control circuitry and improving efficiency.
US10734915B2
Provided is a method for suppressing common-mode current of neutral line in T-type three-level three-phase inverter, the method of the present disclosure can effectively suppress LC filter resonance contained in the currents of a circulation neutral line and inversion side of a inverter, reduce the common-mode leakage current of the inverter, and improve the performance of the inverter.
US10734909B2
A power converter includes an input side to receive an input voltage, and an output side to provide an output voltage, a main switch, a controller, a transformer having a primary winding that couples the main switch to the input side, an active clamp switch coupled to the input side by an active clamp capacitor, and an active clamp controller circuit. The active clamp controller circuit includes a sampling circuit to generate a sampled main switch voltage, a delay circuit to generate a delayed sampled main switch voltage, a voltage comparison circuit, and an active clamp switch controller circuit configured to i) enable the active clamp switch based on a first comparison between the sampled main switch voltage and the delayed sampled main switch voltage, and ii) disable the active clamp switch based on a second comparison between the sampled main switch voltage and the delayed sampled main switch voltage.
US10734908B2
A synchronous rectifier control circuit includes a drain voltage input, a gate voltage output, a gate voltage generation circuit, a burst detection circuit, an on-time monitor circuit, and a burst mode reset circuit. The gate voltage generation circuit includes a first input coupled to the drain voltage input, and an output coupled to the gate voltage output. The burst detection circuit includes a first input coupled to the drain voltage input, and an output coupled to a second input of the gate voltage generation circuit. The on-time monitor circuit includes an input coupled to the output of the gate voltage generation circuit. The burst mode reset circuit includes a first input coupled to the drain voltage input, a second input coupled to an output of the on-time monitor circuit, and an output coupled to a second input of the burst detection circuit.
US10734886B2
The switching power supply device includes an AC voltage input unit, a filter, a first inductor, a switching unit, a first rectification unit that includes first and second rectifier elements, in which the first and second rectifier elements are connected in series, in which a second output terminal of the AV voltage input unit is electrically connected to a transmission line, which connects the first and second rectifier elements, via the filter, and that is connected in parallel to the switching unit, a first capacitor, an inverter, a second rectification unit that includes an input terminal which is connected to a secondary coil, a smoothing unit that is connected between the output terminals of the second rectification unit, a control unit, a second capacitor that is connected between a transmission line, which connects the first and second rectifier element, and the smoothing unit, and a twentieth capacitor.
US10734880B2
A linear conveyor device includes a slider having a linear motor mover; a straight-line conveyance part formed of a connected body of modules each having a linear motor stator and first and second guide rails for guiding movement of the slider on an upper surface of the module; and a cover member. The cover member covers the upper surface of the module so as to cover and conceal the linear motor stator and the first and second guide rails from above. The slider has a shape which allows the slider to be fitted on the cover member in a movable manner in an extending direction of the straight-line conveyance part.
US10734878B2
The present disclosure relates to a spherical wheel motor and a control system thereof, and more particularly, the spherical wheel motor and the control system include a spherical rotor and a stator surrounding an upper surface of the rotor. The rotor includes a spherical outer shell part, a first axial magnet extending in a horizontal direction in the outer shell part, a second axial magnet extending in the horizontal direction and facing the first axial magnet, and a rotary magnet belt provided in a form of a belt with the first axial magnet and the second axial magnet as a central axis. The rotary magnet belt includes a plurality of first rotary magnets and a plurality of second rotary magnets arranged alternately.
US10734868B2
In this vehicle electronic control device, a control board having an electronic component mounted thereon is housed inside a case and a connector portion for connecting the control board to the outside is formed integrally with the case. The connector portion is formed by a housing portion covering the control board, and a terminal portion integrally embedded in the housing portion. The terminal portion has: a terminal for external connection, protruding from the housing portion; and an intermediate path portion extending from the terminal and connected to the control board. An exposure portion which allows the intermediate path portion to be exposed over the entire periphery thereof is formed in a part of the housing portion. An interface sealing member for sealing the interface between the housing portion and the intermediate path portion is provided in the exposure portion.
US10734858B2
When teeth (12) are allocated in a circumferential direction in sequence of a U phase, a V phase and a W phase, a forward wound coil wound on each of the phases is provided as a coil of the U phase, the V phase and the W phase, and a reverse wound coil wound on each of the phases is provided as the coil of a −U phase, a −V phase and a −W phase, the coils are electrically connected between the neighboring segments in an order of the U phase, the −W phase, the −W phase, the V phase, the −U phase, the −U phase, the W phase, the −V phase and the −V phase, and the wire (14) drawn between the armature core (8) and the commutator (10) is drawn around the rotation shaft in the same direction.
US10734853B2
A rotating electric machine is equipped with a consequent-pole type rotor that includes a magnetic pole having a permanent magnet buried therein and a soft magnetic material pole that interposes two magnetic poles. The thickness of the permanent magnet and a circumferential width of the soft magnetic material pole have a relationship that prevents a spread of magnetic flux distribution in the circumferential direction within a gap between the soft magnetic material pole and a stator. As a result, a magnetic flux density difference in the circumferential direction is prevented, which enables a reduction of cogging torque based on an effective reduction of low-frequency space order components that originate from components other than a main component.
US10734849B2
An upper insulator and a lower insulator each include extended portions each extending in a circumferential direction near a radially outer end of a corresponding one of teeth. The teeth are each provided with a coil formed of a conducting wire that is wound around the tooth with the upper insulator and the lower insulator in between. The extended portions of the lower insulator each have a guide portion at an edge on a circumferentially outer and upper side near a region where the conducting wire is led from the upper side toward the lower side when wound into the coil.
US10734840B2
A transmitter device is configured to transfer energy to multiple receiver devices. The transmitter device includes multiple transmitter coils, and a shared power converter is coupled to each transmitter coil. The shared power converter includes a leading half bridge and multiple trailing half bridges. Each transmitter coil is coupled between the leading half bridge and a respective one of the trailing half bridges. The shared power converter is dynamically configurable in that the leading half bridge may be coupled to multiple trailing half bridges when energy is to be transferred wirelessly to two or more receiver devices. The leading half bridge simultaneously operates with each trailing half bridge as an independent full-bridge phase shift inverter. A signal supplied to each transmitter coil is independently regulated by controlling a phase shift of a respective trailing half bridge with respect to the leading half bridge.
US10734833B2
A generator has a voltage regulator that includes a first control unit for lowering an output voltage of the generator when a first maximum value is exceeded and a second control unit for lowering the output voltage either when a first maximum value is exceeded or when a second maximum value that is different from the first maximum value is exceeded.
US10734828B2
A method for charging a battery includes (a) applying a charging current pulse to the battery, (b) after the step of applying the charging current pulse to the battery, measuring a first voltage across the battery, (c) estimating an equilibrium voltage of the battery, (d) determining a Nernst voltage of the battery from a difference between the first voltage and the equilibrium voltage, and (e) controlling charging of the battery at least partially based on the Nernst voltage.
US10734825B2
A respiratory device, such as a ventilator, for use in treating respiratory disorders and for preventing respiratory disorders. The respiratory device is configured to be powered from a range of different power sources including an internal battery, an external battery, AC power source or a DC power source. The device may be electrically connectable to a plurality of external batteries in a series and the power from each external battery is used sequentially along the series. A controller of the respiratory device is configured to detect the connection of the different power sources and control use of the different power sources using a power priority scheme. The controller may determine an estimate of the total available battery capacity from all the electrically connected batteries and display the total battery capacity on a user interface display of the device.
US10734820B2
Electric power is provided to motor vehicles via a respective outlet station. A number of outlet stations are connected to a common electric power supply, each with an interface towards a control node. Over the interfaces, the outlet stations receive operation commands from and send status messages to the control node. The control node allocates a fraction of the common electric power supply to each outlet station to which a motor vehicle is connected. The fractions are allocated such that a sum of all fractions represent a total delivered power, which is less than or equal to a predefined maximum level for the common electric power supply. If an interface between an outlet station and the control node is broken, the outlet station is configured to apply a power supply scheme according to which the outlet station is only allowed to deliver electric power up to a level prescribed by a predefined principle stored in each of the outlet stations.
US10734818B2
An equalization circuit system having a system configuration simplified through reduction of the total number of switches is provided. An electricity storage cell voltage equalization circuit is operated with a square wave voltage generated at a switching node in an electricity storage module voltage equalization circuit as an input voltage, thereby achieving an electricity storage cell voltage equalization circuit without a switch. Typically, the electricity storage cell voltage equalization circuit may be a resonance voltage-doubling rectifier circuit, and the electricity storage module voltage equalization circuit may be a switched capacitor, a resonance voltage-doubling rectifier circuit, a buck-boost converter or the like.
US10734809B2
An energy monitoring system is provided including an inductive clamp associated with an electric circuit and configured to measure current load of the electric circuit and an energy monitoring device. The energy monitoring device comprises a processor and a memory including computer program code, the memory and the computer programming code configured to, with the processor, cause the monitoring device to receive circuit data including the measured current from the inductive clamp, determine a Power Set for one or more intermittent loads associated with the electric circuit based at least in part on the circuit data, determine a solution for the circuit data based on determined Solution Sets of the Power Set, and determine an energy usage for an appliance based on the solution.
US10734806B2
High voltage clamps with active activation and activation-release control are provided herein. In certain configurations, a clamp can have scalable operating clamping voltage level and can be used to protect the electrical circuit connected to a power supply of a semiconductor chip from damage from an overstress event, such as electrostatic discharge (ESD) events. The pins of the power supply are actively monitored to detect when an overstress event is present, and the clamp is turned-on in response to detecting the overstress event. A timer is used to shut down the clamp after a time delay from detecting the overstress event, thereby providing a false detection shutdown mechanism that prevents the protection clamp from getting falsely activated and remain in the on-state during normal circuit operation.
US10734805B2
A circuit is provided for limiting an applied voltage applied between a power line and an electrical ground. The circuit includes a transistive element connected between the power line and the electrical ground to provide a channel, where current flow through the channel is controlled by a control voltage provided to a control terminal of the transistive element. A first Correlated Electron Material (CEM) device having an impedance state is coupled between the power line and a first node, and a sensing circuit coupled between the first node and the control terminal of the transistive element. The sensing circuit is configured to detect a voltage drop across the CEM device and to provide the control voltage. The channel of the transistive element is opened when the detected voltage drop across the CEM device exceeds a threshold. The CEM device may contain a transition metal oxide (TMO), for example.
US10734804B2
A power conversion device used in a DC power transmission system having a multipolar configuration includes: a self-excited AC/DC converter configured to convert electric power between an AC system and a main line; and a controller. The controller is configured to: receive an input of a current value between a neutral point and a DC terminal of the AC/DC converter; control an operation of the AC/DC converter; and control a switch to be opened and closed, the switch being provided between the DC terminal and the neutral point. When the current value is equal to or greater than a predetermined threshold value, the controller stops a plurality of cells and subsequently closes a bypass switch. When the current value is equal to or greater than a predetermined threshold value, the controller opens the switch.
US10734803B2
There is provided mechanisms for travelling wave protection of a transmission line. A method includes performing high-pass filtering of a current and/or voltage measurement of a transmission line so as to detect fault-caused high-frequency components of the current and/or voltage measurement. The method includes providing a result of the high-pass filtering as input to a trip decision maker performing travelling wave detection.
US10734800B2
A dangerous, higher-frequency (>1 kHz) earth fault current in an electrical drive system operated in an electrical grid and having a power converter and an electrical drive machine can be prevented by producing a common-mode voltage with a defined common-mode voltage component in the power converter at a selected low frequency (<1 kHz); in the event of an earth fault in the electrical drive system, flowing at the selected low frequency a common-mode current component of a common-mode current through a predominantly ohmic conductor-to-earth impedance on the basis of the defined common-mode voltage component; measuring a total common-mode current in one of several current circuits of the electrical drive system; determining from the total current the common-mode current component; and when the common-mode current component reaches a reference value, disconnecting the electrical drive system from the electrical grid.
US10734797B2
A pre-expanded cover assembly unit for covering an electrical connection between first and second cables includes a cover assembly in a folded state including an elastomeric outer sleeve defining a cable passage to receive the electrical connection. The outer sleeve includes an intermediate section and first and second outer sections. The first outer section is folded at a first annular fold and is on the intermediate section and/or the second outer section. The cover assembly includes a first retention layer between the intermediate section and the first outer section. The cover assembly includes a first friction reducing layer between the first retention layer and the first outer section. The cover assembly unit includes a removable holdout mounted within the outer sleeve. The cover assembly is movable from a folded state to an unfolded state by sliding the first outer section in a first axial direction away from the intermediate section.
US10734791B2
A pre-chamber spark plug for an internal combustion engine having a surface discharge spark gap that is generally located at a rearward end of a pre-chamber and is configured so that sparking components will have minimal electrode obstruction and promote unhindered gas exchange between the pre-chamber and a main combustion chamber. According to one embodiment, the surface discharge spark gap includes a radial sparking portion where a majority of the sparking occurs in a generally radial direction. According to another embodiment, the surface discharge spark gap includes both a radial sparking portion and an axial sparking portion so that sparking occurs in both radial and axial directions, respectively.
US10734788B2
A wafer comprising: a silicon substrate; a base layer of a predetermined thickness of a III-V semiconductor material bonded with the silicon substrate; and at least one layer grown on the base layer to form a plurality of quantum dot lasers.
US10734786B2
The present embodiment relates to a semiconductor light emitting element having a structure that enables removal of zero-order light from output light of an S-iPM laser. The semiconductor light emitting element includes an active layer, a pair of cladding layers, and a phase modulation layer. The phase modulation layer has a base layer and a plurality of modified refractive index regions each of which is individually arranged at a specific position. One of the pair of cladding layers includes a distributed Bragg reflector layer which has a transmission characteristic with respect to a specific optical image outputted along an inclined direction with respect to a light emission surface and has a reflection characteristic with respect to the zero-order light outputted along a normal direction of the light emission surface.
US10734783B2
A laser oscillator of the present invention comprises: a semiconductor laser module; a first optical fiber for propagating a laser beam from the semiconductor laser module; and a first prism including a first input surface fusion-bonded to the first optical fiber and receiving the laser beam having been input from the first optical fiber, a first reflection surface for reflecting the laser beam having been input from the first input surface and for transmitting a stimulated Raman scattered beam, and a first output surface for outputting the laser beam having been reflected on the first reflection surface.
US10734781B2
In an exemplary embodiment, a structure comprises a plurality of deterministically positioned optically active defects, wherein each of the plurality of deterministically positioned optically active defects has a linewidth within a factor of one hundred of a lifetime limited linewidth of optical transitions of the plurality of deterministically positioned optically active defects, and wherein the plurality of deterministically positioned optically active defects has an inhomogeneous distribution of wavelengths, wherein at least half of the plurality of deterministically positioned optically active defects have transition wavelengths within a less than 8 nm range. In a further exemplary embodiment, method of producing at least one optically active defect comprises deterministically implanting at least one ion in a structure using a focused ion beam; heating the structure in a vacuum at a first temperature to create at least one optically active defect; and heating the structure in the vacuum at a second temperature to remove a plurality of other defects in the structure, wherein the second temperature is higher than the first temperature.
US10734764B2
Apparatus are disclosed for vehicle connectors for monitoring connection with trailer connectors. An example connector of a vehicle for coupling a trailer to the vehicle includes a wall defining a cavity to receive a trailer connector, a seal to engage the trailer connector when the cavity receives the trailer connector, and a first trailer-connection sensor disposed in the seal to monitor engagement of the trailer connector with the seal to identify a secure connection with the trailer connector.
US10734761B1
An anti-vibration connector including an insulating body, a plurality of terminals, an inner housing, an outer housing, two ratchet assemblies, an elastic member and a rear housing. The terminals are disposed through the insulating body. The insulating body is disposed in the inner housing. The outer housing is sleeved outside the inner housing. The outer housing and the inner housing form a chamber. The ratchet assemblies are disposed in the chamber. The first ratchets are floatingly disposed on the outer housing, and the second ratchets are floatingly disposed on the inner housing. The elastic member is disposed between the two ratchet assemblies. The elastic member pushes the two second ratchets such that the two second ratchets are engaged with the two first ratchets, respectively. The rear housing is assembled to the inner housing, such that the two ratchet assemblies and the elastic member are positioned in the chamber.
US10734756B2
A system and method for stabilizing a DIMM in a DIMM connector so as to reduce wear related electrical disconnections therebetween. A base is disposed between adjacent DIMM connectors and is coupled to the motherboard. A cap engages a top edge of a plurality of DIMMs and an adjustable force is applied to the top of the DIMMS by turning a screw which extends from the cap into the base.
US10734751B2
An insulating body or a module for a modular industrial plug-in connector is provided. At least two electrical contact elements are arranged in the module, each of which is assigned a Hall sensor for current measurement. The Hall sensors are electromagnetically shielded from one another within the module by shielding arms.
US10734744B2
Barrel connectors, a right angled adaptor and a single ended fitting include at least one axially displaceable traveling sleeve for insuring electrical continuity with coaxial connector, nominally an F-connector. Each barrel connector described comprises a rigid, metallic hollow body housing an internal contact tube. At least one coiled spring is retained within the body. At least one elongated, tubular traveling sleeve is coaxially disposed within each body end and normally biased outwardly by the springs. The metallic traveling sleeves comprise an elongated shank that contacts the spring, and a head that seats against the connector body ends during installation. Catches or rings defined upon or mounted to travelling sleeve shanks are received within suitable grooves for anchoring the traveling sleeves while facilitating limited axial displacements. The traveling sleeves, and the contact tube therewithin, normally are biased outwardly so that even limited torquing of an F-connector will establish a ground path.
US10734736B1
A switchable dual polarization patch antenna with improved cross polarization isolation to concurrently radiate horizontally polarized signals and vertically polarized signals. A planar conductor is arranged with a first terminal and a second terminal that are vertically spaced on a portion of the planar conductor to radiate a component of a vertically polarized signal with zero degrees of phase shift from one of the two terminals and radiate another component of the vertically polarized signal having a 180 degrees of phase shift from the other of the two terminals. A hybrid coupler can provide the 180 degrees of phase shift. A horizontally polarized signal is radiated from a third terminal that is horizontally spaced on another portion of the planar conductor and coupled to a horizontally polarized signal source. The direction of the 180 phase shift for the first and second components of the vertically polarized signal may be selected. Also, a direction for a phase shift for the horizontally polarized signal may be selectable.
US10734735B2
Embodiments described herein generally relate to phased array antenna systems or packages and techniques of making and using the systems and packages. A phased array antenna package may include a distributed phased array antenna comprising (1) a plurality of antenna sub-arrays, which may each include a plurality of antennas, (2) a plurality of Radio Frequency Dies (RFDs), each of the RFDs located proximate and electrically coupled by a trace of a plurality of traces to a corresponding antenna sub-array of the plurality of antenna sub-arrays, and (3) wherein each trace of the plurality of traces configured to electrically couple an antenna of the plurality of antennas to the RFD located proximate the antenna, wherein each trace of the plurality of traces is configured to transmit millimeter wave (mm-wave) radio signals, and wherein the plurality of traces are each of a substantially uniform length.
US10734731B2
The invention concerns an assembly for an antenna, wherein the assembly comprises at least one circuit board of an electronic device, a conductive body arranged at a distance from said at least one circuit board, and an element of said antenna which comprises multiple attachment points for at least one connecting member, and said at least one connecting member is coupled to only one of said multiple attachment points at a time.
US10734730B2
The present invention discloses a narrow band slot antenna with a coupling suppression. The slot antenna includes a medium plate (1), a copper-clad layer (2), an A-capacitor (3), and a B-capacitor (4). The copper-clad layer (2) has an A-slot (21) and a B-slot (22) thereon, the A-capacitor (3) and the B-capacitor (4) are respectively mounted inside and at two ends of the B-slot (22). The present invention loads the capacitors at a specific position on a finite medium plate to increase the isolation between the antennas, which is beneficial to rectify the slot antenna.
US10734729B2
The invention discloses an antenna arrangement of a bonsai type, where not only the resonating frequencies may be adjusted, but also the bandwidth around some or all resonating frequencies. This is achieved by adding new branches to the trunk of the bonsai antenna arrangement. The positions and lengths of the branches are defined as a function of the frequencies around which the bandwidth should be adjusted. The antenna arrangement may be inscribed in a 3D compact volume of a specific form factor. It may also be inscribed in a planar structure. The antenna arrangement may be produced at a low cost. It may be used in a variety of applications, including communications in WiFi or other standards of multimedia content that need defined bandwidths for instance to comply to a predetermined quality of service.
US10734727B2
A radio frequency identification (RFID) tag includes a power harvesting circuit, an RF front-end, and a processing module. The power harvesting circuit generates power for the RFID tag from a continuous wave of an inbound radio frequency (RF) signal. The RF front-end receives the inbound RF signal and transmits an outbound RF signal. The RF front-end includes a tuning circuit that is tuned based on a capacitance setting. The tuning of the tuning circuit effects a characteristic of the RF front-end. The processing module generate the capacitance setting to adjust the characteristic of the RF front-end to a desired characteristic.
US10734724B2
A radiating system of a wireless device transmits and receives electromagnetic wave signals in a frequency region and comprises an external port, a radiating structure, and a radiofrequency system. The radiating structure includes: a ground plane layer with a connection point; a radiation booster with a connection point and being smaller than 1/30 of a free-space wavelength corresponding to a lowest frequency of the frequency region; and an internal port between the radiation booster connection point and the ground plane layer connection point. The radiofrequency system includes: a first port connected to the radiating structure's internal port; and a second port connected to the external port. An input impedance at radiating structure's disconnected internal port has a non-zero imaginary part across the frequency region. The radiofrequency system modifies impedance of the radiating structure to provide impedance matching to the radiating system within the frequency region at the external port.
US10734719B1
A low-PIM cable support rail assembly includes a metal strut extending in a longitudinal direction positioned within a potential PIM reactive zone of a cellular base station antenna. A channel runner assembly slidably engaged with the strut includes a low-PIM a low-PIM spacer and a low-PIM channel runner block that includes a captured rod anchor, such as a nut or bolt head, engaged with a threaded rod. A compression nut engaged with the threaded rod releasably pinches strut rails between the low-PIM channel runner block and the low-PIM spacer to secure the channel runner assembly at a desired position along the strut. The low-PIM channel runner block and low-PIM spacer prevent metal-to-metal contact when the compression nut is tightened to secure the channel runner assembly to the strut. A cable support block or other component may be spaced apart from the strut along the threaded rod.
US10734718B2
The present application describes a method of forming a flexible dipole antenna. The method includes a step of surrounding an outer jacket of a cable with a lower limit radiating element. The lower limit radiating element includes a first annular surface opposite a second annular surface with a hollow body disposed therebetween joining the first and second annular surfaces together. Each of the first and second annular surfaces has a diameter greater than a diameter of the outer jacket of the cable. The method also includes a step of extending a bandwidth of the flexible dipole antenna by indirectly surrounding the lower limit radiating element with a higher limit radiating element. The higher limit radiating element has a length approximately 30% less than a length of the lower limit radiating element, allowing the higher limit radiating element to capture frequencies greater than those captured by the lower limit radiating element.
US10734717B2
An antenna include a resonator element configured to radiate a wireless signal and a substrate embedding the resonator. The resonator element may be a 3D resonator element. The 3D resonator element may be a helical resonator element.
US10734700B2
An apparatus for pointing wireless communication antennas may include (1) a mount that secures (A) a wireless communication antenna that transmits wireless communication signals to a remote wireless communication antenna that is secured on a remote mount and (B) an array of pointing antennas that receives, from a remote array of pointing antennas mounted on the remote mount, a beacon signal that indicates a location of the remote array of pointing antennas, (3) a motorized drive that physically orients the mount, and (4) a processing device that (A) determines, based at least in part on the beacon signal, an orientation of a boresight axis of the wireless communication antenna relative to a boresight axis of the remote wireless communication antenna and (B) directs the motorized drive to orient the mount such that the wireless communication antenna's boresight axis aligns with the remote wireless communication antenna's boresight axis.
US10734693B2
A cell module for electric and hybrid vehicles, in which channels for a heat exchange are integrated into at least one outer wall of the module.
US10734692B2
A battery pack for an electric vehicle may include a plurality of battery cells arranged into at least a first row and a second row. The first row may be parallel to the second row. The battery pack may also include a coolant loop with at least one channel through which liquid can flow. The coolant tube may run between the first row and the second row. The battery pack may additionally include a thermal pad comprising a first side and a second side. The first side of the thermal pad may be shaped to conform to the coolant loop and the second side of the thermal pad may be shaped to conform to curvatures of the first row.
US10734681B2
An electrolyte for a rechargeable lithium battery and a rechargeable lithium battery, the electrolyte including a lithium salt; an organic solvent; and an additive, wherein the additive includes LiPO2F2, and a compound represented by the following Chemical Formula 1:
US10734677B2
A new class of electrolyte salts that contain substituted imidazole or benzimidazole groups is described. The salts can be used in non-aqueous electrolytes in lithium or other alkali battery cells. When used with a lithium metal anode, the salts are electrochemically stable up to 5V vs. Li/Li+.
US10734675B2
Rechargeable lithium battery cell having a housing, a positive electrode, a negative electrode and an electrolyte containing a conductive salt, wherein the electrolyte comprises SO2 and the positive electrode contains an active material in the composition LixM′yM″z(XO4)aFb, wherein M′ is at least one metal selected from the group consisting of the elements Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn, M″ is at least one metal selected from the group consisting of the metals of the groups II A, III A, IV A, V A, VI A, IB, IB, IIB, IVB, VB, VIB and VIIIB, X is selected from the group consisting of the elements P, Si and S, x is greater than 0, y is greater than 0, z is greater than or equal to 0, a is greater than 0 and b is greater than or equal to 0.
US10734662B2
A controller of a fuel cell system, when the fuel cell system is started up and thrown into warming-up operation, sets a rotating speed of the circulation pump to a reference rotating speed, subsequently repeatedly performs: (a) a process of acquiring the first temperature and the second temperature; and (b) a process of controlling the circulation pump by setting the rotating speed of the circulation pump in order that with the first temperature is within a predetermined temperature range, the rotating speed is made generally higher than the reference rotating speed with increasing temperature difference between the first temperature and the second temperature, and when a condition for rotating the circulation pump at the reference rotating speed is satisfied, the controller sets the rotating speed of the circulation pump to the reference rotating speed.
US10734660B2
A membrane electrode assembly for a fuel cell comprises a proton exchange membrane having an anode side and a cathode side. An anode catalyst layer is on the anode side of the proton exchange membrane and a cathode catalyst layer is on the cathode side of the proton exchange membrane. Each of the anode catalyst layer and the cathode catalyst layer comprises a metal alloy. A gas diffusion layer is on each of the anode catalyst layer and the cathode catalyst layer opposite the proton exchange membrane. A sacrificial intercalating agent is between the proton exchange membrane and one of the anode catalyst layer and the cathode catalyst layer, the sacrificial intercalating agent having sulfonate sites that attract metal cations resulting from dissolution of the metal alloy prior to the metal cations reaching the proton exchange membrane.
US10734645B2
A particulate active material for a power storage device positive electrode having a higher energy density is provided, which includes particles of an electrically conductive polymer and a conductive agent, wherein the electrically conductive polymer particles each have a surface coated with the conductive agent.
US10734640B2
Much improved energy storage is provided by exploiting the phase transition between different states or phases of a condensed matter “working material.” Such phases constitute the high energy “charged” and low energy “discharged” state of the battery. The two phases conduct electricity in a different manner. This is reflected by different chemical potentials that determine the open circuit voltage of the battery. Such a battery can have an energy density that easily exceeds that of current chemical batteries and super capacitors.
US10734634B2
A positive electrode for an all-solid secondary battery, comprising a positive electrode active material expressed by A2S.AX, wherein A is an alkali metal; and X is selected from I, Br, Cl, F, BF4, BH4, SO4, BO3, PO4, O, Se, N, P, As, Sb, PF6, AsF6, ClO4, NO3, CO3, CF3SO3, CF3COO, N(SO2F)2 and N(CF3SO2)2.
US10734630B2
The present invention relates to a secondary battery. The secondary battery includes an electrode assembly built in a can, a positive electrode tab of the electrode assembly connected to a cap coupled to an upper end of the can, wherein the positive electrode tab having at least one bent portion, a negative electrode tab, and a buffer member inserted into the bent portion of the positive electrode tab. Thus, excessive bending of the positive electrode tab is prevented by the buffer member.
US10734609B2
A display device includes a display region arranged above a substrate, a first light emitting element emitting light of a first color, a second light emitting element emitting light of a second color, and a third light emitting element emitting light of a third color arranged in the display region, and a first optical path length adjustment film, a second optical path length adjustment film, and a third optical path length adjustment film in the display region.
US10734608B2
The present disclosure discloses a display panel, which includes a thin-film transistor arranged on a substrate, an electroluminescent diode arranged on the thin-film transistor, which includes a bottom electrode, a light emitting layer, and a top electrode, and a thin-film encapsulation layer covering the electroluminescent diode. The display panel further includes an auxiliary electrode and a lead wire of the top electrode of the electroluminescent diode. The auxiliary electrode is electrically connected to the lead wire of the top electrode of the electroluminescent diode by penetrating through a via hole of the thin-film encapsulation layer. Arrangements of the present disclosure provide a display panel and a manufacturing method thereof and a display device including the display panel.
US10734605B2
A flexible organic light emitting diode (OLED) device and a manufacturing method thereof are provided. The manufacturing method includes forming a flexible base; forming a light emitting layer on the flexible base; evaporating a barrier material including a precursor polymer, a photoinitiator and a cross-linking agent on a surface of the light emitting layer; and irradiating a light beam on a surface of the barrier material during evaporating the barrier material, so as to form a barrier layer on a surface of the light emitting layer to block water and oxygen.
US10734597B2
Disclosed are an organic light-emitting device and a method of manufacturing the same. In the organic light-emitting device, an auxiliary electrode is formed on anode electrode to come into contact with the anode electrode via the same mask process as the anode electrode, which results in a simplified structure and simplified processing. In addition, a bank is disposed to cover a side surface and an upper surface of the auxiliary electrode and a side surface of the anode electrode, whereby damage to the auxiliary electrode and the anode electrode is prevented.
US10734595B2
An electroluminescence display apparatus includes a substrate including a display area and a non-display area. The non-display area includes a bending area and a link area. A first power supply electrode is in the link area. A second power supply electrode is in the non-display area. The second power supply electrode surrounds at least three sides of the display area, and both ends of the second power supply electrode in the link area. A protective layer covers the first power supply electrode and the second power supply electrode in the link area. A first planarizing layer covers one side of the first power supply electrode; and a second planarizing layer is on a contact hole of the protective layer that exposes the first power supply electrode and the second power supply electrode. The first planarizing layer is not on the contact hole.
US10734594B2
To provide a light-emitting element which uses a fluorescent material as a light-emitting substance and has higher luminous efficiency. To provide a light-emitting element which includes a mixture of a thermally activated delayed fluorescent substance and a fluorescent material. By making the emission spectrum of the thermally activated delayed fluorescent substance overlap with an absorption band on the longest wavelength side in absorption by the fluorescent material in an S1 level of the fluorescent material, energy at an S1 level of the thermally activated delayed fluorescent substance can be transferred to the S1 of the fluorescent material. Alternatively, it is also possible that the S1 of the thermally activated delayed fluorescent substance is generated from part of the energy of a T1 level of the thermally activated delayed fluorescent substance, and is transferred to the S1 of the fluorescent material.
US10734592B2
The present disclosure provides a method for manufacturing a thermal insulation film, a thermal insulation structure, and a display device. The method for manufacturing the thermal insulation film includes: providing a substrate; forming a sacrificial layer on the substrate; forming a thermal insulation layer on the sacrificial layer, the thermal insulation layer including at least one opening capable of exposing a portion of the sacrificial layer; and etching the sacrificial layer through the opening, so as to form a plurality of hollow holes between the thermal insulation layer and the substrate. A method for manufacturing the thermal insulation film according to the present disclosure is used for manufacturing a thermal insulation film.
US10734585B2
An organic light-emitting apparatus includes an organic light-emitting device and a magnetic field-applying member that applies a magnetic field to the organic light-emitting device. The organic light-emitting device includes a host and a dopant.
US10734583B2
The present disclosure discloses an electroluminescent substrate plate, a method of manufacturing the same, and a display device. The method includes printing an ink comprising a light-emitting layer material and a solvent capable of dissolving the light-emitting layer material in a display region of a substrate; and printing a solvent in a region other than the display region. Thus, the method can easily obtain an electroluminescent substrate plate, and the manufactured electroluminescent substrate plate can satisfy the dry atmosphere consistency of the display region and the peripheral region during the film formation by inkjet printing, can significantly improve the film thickness uniformity of the display region, and at the same time is beneficial to the design requirements of a large size and a narrow frame.
US10734577B2
A memory device including a template layer is disclosed. The memory device also includes a memory layer connected to the template layer, where the memory layer has a variable resistance, and where the crystalline structure of the memory layer matches the crystalline structure of the template layer. The memory device also includes a conductive top electrode on the memory layer, where the top electrode and the memory layer cooperatively form a heterojunction memory structure.
US10734565B2
An electric generator device is provided that includes a thermoelectric array, a base plate, and an electric power output. The thermoelectric array may include a hot side portion and a cold side portion. The base plate may be configured to receive heat from a heat source to be transferred to the hot side portion of the thermoelectric array. The electric power output may be electrically coupled to the thermoelectric array. The thermoelectric array may be configured to convert a temperature differential into an electric voltage for output to the electric power output. The power generation housing may be configured to hold a heat rejection substance that absorbs heat from the cold side portion of the thermoelectric array to facilitate generation of the temperature differential between the hot side portion and the cold side portion of the thermoelectric array.
US10734563B2
A light emitting device includes a substrate, a light emitting element and a light transmissive member. The substrate includes an insulating base material having a first main surface, a second main surface that is opposite from the first main surface, and a mounting surface that is adjacent to at least the second main surface, a pair of connection terminals disposed on the first main surface, a heat dissipation terminal disposed on the second main surface, and having a narrow part and a wide part with a width of the wide part being wider than a width of the narrow part, and a pair of vias connecting the connection terminals and the heat dissipation terminal. The light emitting element has a pair of electrodes which connect to element connection sections of the pair of connection terminals. The light transmissive member is disposed on an upper surface of the light emitting element.
US10734561B2
A method of manufacturing a wiring board includes: providing an insulating member that includes a plurality of regions partitioned by partitions provided with openings at each of which adjacent ones of the regions are joined to each other; disposing conductive members respectively in the plurality of regions; and joining adjacent ones of the conductive members through one of the partitions to each other at the opening of the partition.
US10734560B2
A device for an LED has a substrate and a circuit on the substrate configured to accept the LED. The circuit includes a first set of electrical traces terminating at a first set of solder pads for a first sized LED, a second set of electrical traces terminating at a second set of solder pads for a second sized LED different from the first sized LED, and peripheral electrical traces for electrically interconnecting electrical traces of the first set of electrical traces or between electrical traces of the second set of electrical traces. Connection components electrically interconnect the first set of electrical traces with each other or the electrical traces of the second set of electrical traces with each other, respectively, at corresponding solder pads. The device is configurable to provide a first voltage and a second voltage to the LED.
US10734546B2
A coated quantum dot is provided wherein the quantum dot is characterized by having a solid state photoluminescence external quantum efficiency at a temperature of 90° C. or above that is at least 95% of the solid state photoluminescence external quantum efficiency of the semiconductor nanocrystal at 25° C. Products including quantum dots described herein are also disclosed.
US10734538B2
A photovoltaic apparatus (200) is provided including a back sheet (210) and a photovoltaic device (100) disposed over the back sheet. The photovoltaic device includes an array of photovoltaic cells (101-104) extending in a first direction; and a plurality of serial interconnects (191) having a length that extends in a second direction, wherein each serial interconnect is disposed between and electrically connects consecutive photovoltaic cells of the array. The photovoltaic apparatus further includes a front sheet (250) disposed over the photovoltaic device, the front sheet having a plurality of structures (220), wherein each structure has one or more edges (221) aligned with one of the serial interconnects.
US10734518B2
A semiconductor structure is provided that includes a bulk semiconductor substrate of a first semiconductor material. The structure further includes a plurality of fin pedestal structures of a second semiconductor material located on the bulk semiconductor substrate of the first semiconductor material, wherein the second semiconductor material is different from the first semiconductor material. In accordance with the present application, each fin pedestal structure includes a pair of spaced apart semiconductor fins of the second semiconductor material.
US10734510B2
A process for forming a nitride semiconductor device is disclosed. The resulting semiconductor device includes a semiconductor stack with a top layer containing gallium (Ga) and nitrogen (N), electrodes of a source, a gate and a drain provided on the semiconductor stack, and a silicon nitride (SiN) film provided on the GaN layer between the drain electrode and the gate electrode but apart from the gate electrode. The SiN film has a silicon rich composition with a composition ratio of Si/N that is greater than ¾ and substantial oxygen contents.
US10734508B2
A compound semiconductor device includes a first transistor formed on a GaN epitaxial layer. The first transistor includes a gate electrode, a source electrode, a drain electrode, and a protective film covering them. End portions of the first transistor do not overhang the protective film, and the concentration of fluorine in the GaN epitaxial layer in the region where the gate electrode of the first transistor is formed is substantially zero.
US10734497B2
Methods for forming a semiconductor device structure are provided. The methods may include forming a molybdenum nitride film on a substrate by atomic layer deposition by contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor, contacting the substrate with a second vapor phase reactant comprise a nitrogen precursor, and contacting the substrate with a third vapor phase reactant comprising a reducing precursor. The methods provided may also include forming a gate electrode structure comprising the molybdenum nitride film, the gate electrode structure having an effective work function greater than approximately 5.0 eV. Semiconductor device structures including molybdenum nitride films are also provided.
US10734485B2
The main purpose of the present invention is to provide: a nonpolar or semipolar GaN substrate, in which a nitride semiconductor crystal having a low stacking fault density can be epitaxially grown on the main surface of the substrate, and a technique required for the production of the substrate.This invention provides: a method for manufacturing an M-plane GaN substrate comprising; forming a mask pattern having a line-shaped opening parallel to an a-axis of a C-plane GaN substrate on an N-polar plane of the C-plane GaN substrate, growing a plane-shape GaN crystal of which thickness direction is an m-axis direction from the opening of the mask pattern by an ammonotharmal method, and cutting out the M-plane GaN substrate from the plane-shape GaN crystal.
US10734484B2
A semiconductor device includes trench gate structures that extend from a first surface into a silicon carbide portion. A shielding region between a drift zone and the trench gate structures along a vertical direction orthogonal to the first surface forms an auxiliary pn junction with the drift zone. Channel regions and the trench gate structures are successively arranged along a first horizontal direction. The channel regions are arranged between a source region and a current spread region along a second horizontal direction orthogonal to the first horizontal direction. Portions of mesa sections between neighboring trench gate structures fully deplete at a gate voltage within an absolute maximum rating of the semiconductor device.
US10734482B2
Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a base; a fin extending away from the base, wherein the fin includes a quantum well layer; and one or more gates disposed on the fin. In some such embodiments, the one or more gates may include first, second, and third gates. Spacers may be disposed on the sides of the first and second gates, such that a first spacer is disposed on a side of the first gate proximate to the second gate, and a second spacer, physically separate from the first spacer, is disposed on a side of the second gate proximate to the first gate. The third gate may be disposed on the fin between the first and second gates and extend between the first and second spacers.
US10734477B2
A semiconductor device including at least one fin extending upward from a substrate and a gate on the substrate, wherein the gate includes outer sidewalls, wherein the fin extend through a width of the gate. A spacer material can be adjacent to the outer sidewalls of the gate, wherein a top surface of the spacer material is below the top surface of the gate and above the top surface of the fin. The semiconductor device can also include an epitaxial semiconductor layer over the fins on each side of the spacer material. A low-k dielectric material can be deposited above each epitaxial semiconductor layer. The semiconductor device also includes a dielectric top layer forming a top surface of the transistor, wherein the dielectric top layer seals an air gap between the top surface of the fins and the dielectric top layer.
US10734474B2
A metal-insulator-metal (MIM) capacitor structure includes a semiconductor substrate and a bottom conductive layer above the semiconductor substrate. The bottom conductive layer has a slanted sidewall with respect to a top surface of the semiconductor substrate. The MIM capacitor structure further includes a top conductive layer above the bottom conductive layer. The top conductive layer has a vertical sidewall with respect to the top surface of the semiconductor substrate. The MIM capacitor structure further includes an insulating layer interposed between the bottom conductive layer and the top conductive layer. The insulating layer covers the slanted sidewall of the bottom conductive layer.
US10734472B2
A negative capacitance device includes a semiconductor layer. An interfacial layer is disposed over the semiconductor layer. An amorphous dielectric layer is disposed over the interfacial layer. A ferroelectric layer is disposed over the amorphous dielectric layer. A metal gate electrode is disposed over the ferroelectric layer. At least one of the following is true: the interfacial layer is doped; the amorphous dielectric layer has a nitridized outer surface; a diffusion-barrier layer is disposed between the amorphous dielectric layer and the ferroelectric layer; or a seed layer is disposed between the amorphous dielectric layer and the ferroelectric layer.
US10734467B2
A display device including a substrate, first and second reference voltage lines, a first insulation layer is provided. The first and second reference voltage lines are disposed in a peripheral area of the substrate. The first insulation layer having a groove is disposed on the first reference voltage line. The groove extends along a first direction and exposes a contact portion of the first reference voltage line. The first insulation layer covers a first covered portion of the first reference voltage line. The second reference voltage line contacts the contact portion at the groove and has a contact surface. In a second direction, a first width W1 of the contact surface, a second width W2 of the first reference voltage line and a third width W3 of the first covered portion are complied with 1 μm≤W1≤(W2−W3), wherein than 0 and smaller than W2.
US10734463B2
An electronic device may have a display with a transparent layer such as a cover layer. An ambient light sensor may be aligned with an ambient light sensor window formed from an opening in a masking layer on the transparent layer in an inactive portion of the display. To help mask the ambient light sensor window from view, the ambient light sensor window may be provided with a black coating that matches the appearance of surrounding masking layer material while allowing light to reach the ambient light sensor. The black coating may include multiple pigments and may have a flat spectrum to enhance color ambient light measurements made with the ambient light sensor. The black coating may include a polymer binder or other binder that contains multiple pigments. The pigments may include a black pigment, a blue pigment, and an infrared-light-transparent pigment and/or other pigments.
US10734459B2
A display device includes a substrate including a display area, a peripheral area, and a pad area, first and second voltage lines, and an island dam. The first voltage line is disposed between a first side of the display area and the pad area, the second voltage line is disposed at other sides of the display area, and the island dam is disposed between the display area and the pad area. The first voltage line includes a first main voltage line, and a first connection unit that protrudes from the first main voltage line and extends toward the pad area. The second voltage line includes a second main voltage line, and a second connection unit that protrudes from an end of the second main voltage line and extends toward the pad area. The island dam extends substantially parallel to the first main voltage line.
US10734452B1
An organic light-emitting display apparatus implemented by using a plurality of organic light-emitting diodes on a substrate and including a first pixel and a second pixel respectively emitting light of different colors, includes: a pixel-defining layer including a first opening and a second opening, the first opening defining an emission area of the first pixel, and the second opening defining an emission area of the second pixel; a total reflective layer over the pixel-defining layer, the total reflective layer including a first upper opening corresponding to the first pixel and a second upper opening corresponding to the second pixel; and a planarization layer covering the total reflective layer and having a refractive index greater than a refractive index of the total reflective layer, wherein an area of the first upper opening is different from an area of the second upper opening.
US10734450B2
The inventive concept provides a memory device, in which memory cells are arranged to have a low variation in electrical characteristics and thereby enhanced reliability, an electronic apparatus including the memory device, and a method of manufacturing the memory device. In the memory device, memory cells at different levels may be covered with spacers having different thicknesses, and this may control resistance characteristics (e.g., set resistance) of the memory cells and to reduce a vertical variation in electrical characteristics of the memory cells. Furthermore, by adjusting the thicknesses of the spacers, a sensing margin of the memory cells may increase.
US10734446B2
A three dimensional (3D) memory array is disclosed. The 3D memory array may include an electrode plane and a memory material disposed through and coupled to the electrode plane. A memory cell included in the memory material is aligned in a same plane as the electrode plane, and the memory cell is configured to exhibit a first threshold voltage representative of a first logic state and a second threshold voltage representative of a second logic state. A conductive pillar is disposed through and coupled to the memory cell, wherein the conductive pillar and electrode plane are configured to provide a voltage across the memory cell to write a logic state to the memory cell. Methods to operate and to form the 3D memory array are disclosed.
US10734434B2
An image sensor pixel includes a photodiode disposed in a semiconductor material to generate image charge in response to light incident on a backside of the semiconductor material, and a pinning layer disposed in the semiconducting material and coupled to the photodiode. The pixel also includes a vertical overflow drain disposed in the semiconductor material and coupled to the pinning layer such that the pinning layer is disposed between the vertical overflow drain and the photodiode. A floating diffusion disposed in the semiconductor material proximate to the photodiode, and a vertical transfer transistor is disposed in part in the semiconductor material and coupled to the photodiode to transfer the image charge from the photodiode to the floating diffusion in response to a transfer signal applied to the gate terminal of the vertical transfer transistor.
US10734432B2
An imaging device includes a semiconductor substrate having a surface, the semiconductor substrate including: a first layer of a first conductivity type; a second layer of a second conductivity type, the second layer being closer to the surface; and a pixel including: a photoelectric converter configured to convert light into charge; a first diffusion region of the first conductivity type, the first diffusion region facing the first layer via the second layer, configured to store at least a part of the charge; and a second diffusion region being a diffusion region closest to the first diffusion region among diffusion regions of the first conductivity type, the diffusion regions facing the first layer via the second layer. A distance between the second diffusion region and the first layer is equal to or less than 1.5 times a distance between the second diffusion region and the first diffusion region.
US10734431B2
An image sensor includes a pixel array including pixel blocks, each comprising a light receiving section including unit pixels sharing a floating diffusion; and a driving section including a reset transistor and a driver transistor, wherein the pixel blocks include a first pixel block and a second pixel block which are adjacent to each other in a first direction, and a third pixel block and a fourth pixel block which are adjacent to the first pixel block and the second pixel block, respectively, in a second direction, and wherein the reset transistor of the first pixel block and the reset transistor of the second pixel block share a drain between the reset transistors, and the driver transistor of the third pixel block and the driver transistor of the fourth pixel block share a drain between the driver transistors.
US10734425B2
An image sensor, comprising: a pixel array in which a plurality of pixels are arranged, wherein at least one of the plurality of pixels includes: a substrate including a photoelectric transformation element having a light receiving region and a light shielding region; and a first hafnium-containing layer formed to contact the substrate corresponding to the light shielding region.
US10734424B2
An image sensing device includes an image sensor including a first sub-pixel array and a second sub-pixel array. The first sub-pixel array includes a plurality of first pixels having a first color filter, and the second sub-pixel array includes a plurality of second pixels having a second color filter and a plurality of third pixels for phase detection. The image sensor may generate first pixel values from the first pixels, second pixel values from the second pixels and third pixel values from the third pixels. The image sensing device also includes an image processor suitable for generating a first image value corresponding to the first sub-pixel array based on the first pixel values and generating a second image value corresponding to the second sub-pixel array based on the first to third pixel values.
US10734420B2
An image sensor is provided. The image sensor may include first to fourth unit pixels. The first unit pixel includes a first photodiode, a first transfer gate, and a first floating diffusion region, and the second unit pixel includes a second photodiode, a second transfer gate, and a second floating diffusion region, and the third unit pixel includes a third photodiode, a third transfer gate, and a third floating diffusion region, and the fourth unit pixel includes a fourth photodiode, a fourth transfer gate, and a fourth floating diffusion region. The first photodiode and the third photodiode may be N-type photodiodes. The second photodiode and the fourth photodiode may be P-type photodiodes.
US10734412B2
Techniques are disclosed for backside contact resistance reduction for semiconductor devices with metallization on both sides (MOBS). In some embodiments, the techniques described herein provide methods to recover low contact resistance that would otherwise be present with making backside contacts, thereby reducing or eliminating parasitic external resistance that degrades transistor performance. In some embodiments, the techniques include adding an epitaxial deposition of very highly doped crystalline semiconductor material in backside contact trenches to provide enhanced ohmic contact properties. In some cases, a backside source/drain (S/D) etch-stop layer may be formed below the replacement S/D regions of the one or more transistors formed on the transfer wafer (during frontside processing), such that when backside contact trenches are being formed, the backside S/D etch-stop layer may help stop the backside contact etch process before consuming a portion or all of the S/D material. Other embodiments may be described and/or disclosed.
US10734409B2
A semiconductor device includes a stack structure having a plurality of interlayer insulation layers and a plurality of gate electrode layers which are alternately stacked on a substrate, a ferroelectric insulation layer and a channel layer sequentially stacked on a sidewall of a trench that penetrates the stack structure, and a capping oxide pattern disposed between the ferroelectric insulation layer and each of the plurality of interlayer insulation layers. The capping oxide pattern and the ferroelectric insulation layer include the same metal oxide material.
US10734408B2
A non-volatile memory system is provided that includes a plurality of NAND strings of non-volatile storage elements, each non-volatile storage element including a control gate, a tunneling layer, a floating gate, and a blocking layer including a ferroelectric material. The tunneling layer is disposed between the control gate and the floating gate, and the floating gate is disposed between the tunneling layer and the blocking layer.
US10734403B2
Nonvolatile memory devices and methods of fabricating the nonvolatile memory devices are provided. The nonvolatile memory devices may include a stacked structure including a plurality of conductive films and a plurality of interlayer insulating films stacked in an alternate sequence on a substrate and a vertical channel structure extending through the stacked structure. The plurality of conductive films may include a selection line that is closest to the substrate among the plurality of conductive films. The selection line may include a lower portion and an upper portion sequentially stacked on the substrate, and a side of the upper portion of the selection line and a side of the lower portion of the selection line may have different profiles.
US10734402B2
A method of fabricating a semiconductor device is described. A plurality of first films and a plurality of second films are alternately formed on a substrate. A hole is formed in the first and second films. A first metal layer is formed on a surface of the hole. The first metal layer is removed from a bottom surface of the hole. A second metal layer may be formed on a surface of the first metal layer after removing the first metal layer from the bottom surface of the hole. The bottom of the hole exposed from the first and second metal layers may be processed to increase a depth of the hole.
US10734399B2
Some embodiments include apparatuses, and methods of forming the apparatuses. Some of the apparatuses include a first group of conductive materials interleaved with a first group of dielectric materials, a pillar extending through the conductive materials and the dielectric materials, memory cells located along the first pillar, a conductive contact coupled to a conductive material of the first group of conductive materials, and additional pillars extending through a second group of conductive materials and a second group of dielectric materials. The second pillar includes a first portion coupled to a conductive region, a second portion, a third portion, and a fourth portion coupled to the conductive contact. The second portion is located between the first and third portions. The second portion of each of the additional pillars is part of a piece of material extending from a first pillar to a second pillar of the additional pillars.
US10734396B2
Provided herein may be a semiconductor device. The semiconductor device may include a stack, channel holes passing through the stack, dummy channel holes passing through the stack and disposed between the channel holes, a slit passing through the stack and the dummy channel holes.
US10734392B2
A non-volatile memory device may include a semiconductor substrate, a ferroelectric layer, a source, a drain, a gate and a channel region. The semiconductor substrate may have a recess. The ferroelectric layer may be formed in the recess. The source may be arranged at a first side of the recess. The drain may be arranged at a second side of the recess opposite to the first side. The gate may be arranged on the ferroelectric layers. The channel region may be formed on the recess between the source and the drain.
US10734388B1
Some embodiments include an integrated assembly having an active-region-pillar extending upwardly from a base. The active-region-pillar includes a digit-line-contact-region between a first storage-element-contact-region and a second storage-element-contact-region. A threshold-voltage-inducing-structure is adjacent a lower portion of the active-region-pillar. A first channel region includes a first portion of the active-region-pillar between the digit-line-contact-region and the first storage-element-contact-region. A second channel region includes a second portion of the active-region-pillar between the digit-line-contact-region and the second storage-element-contact-region. A first wordline is adjacent the first portion of the active-region-pillar. A second wordline is adjacent the second portion of the active-region-pillar. A digit-line is coupled with the digit-line-contact-region. First and second storage-elements are coupled with the first and second storage-element-contact-regions. A voltage source is coupled with the threshold-voltage-inducing-structure to electrostatically induce a desired threshold voltage along the first and second channel regions.
US10734385B2
A semiconductor device that includes at least one germanium containing fin structure having a length along a <100> direction and a sidewall orientated along the (100) plane. The semiconductor device also includes at least one germanium free fin structure having a length along a <100> direction and a sidewall orientated along the (100) plane. A gate structure is present on a channel region of each of the germanium containing fin structure and the germanium free fin structure. N-type epitaxial semiconductor material having a square geometry present on the source and drain portions of the sidewalls having the (100) plane orientation of the germanium free fin structures. P-type epitaxial semiconductor material having a square geometry is present on the source and drain portions of the sidewalls having the (100) plane orientation of the germanium containing fin structures.
US10734383B2
An integrated circuit includes a gate electrode level region that includes a plurality of linear-shaped conductive structures. Each of the plurality of linear-shaped conductive structures is defined to extend lengthwise in a first direction. Some of the plurality of linear-shaped conductive structures form one or more gate electrodes of corresponding transistor devices. A local interconnect conductive structure is formed between two of the plurality of linear-shaped conductive structures so as to extend in the first direction along the two of the plurality of linear-shaped conductive structures.
US10734376B2
A semiconductor device includes IGBT devices; and a freewheeling diode provided for each IGBT device. The IGBT devices are connected in parallel to be driven. Each IGBT device includes: a collector region; a drift region; a body region; a trench gate penetrating the body region; and an emitter region surrounded by the body region and in contact with the trench gate. Each IGBT device further includes an active cell with the emitter region; a dummy cell without the emitter region; and an active dummy cell without the emitter region. The active dummy cell has a float cell where the body region is in electrically-floating condition. A ratio of the number of float cell to the total number of the active cell and the active dummy cell is larger than or equal to 5% and is smaller than or equal to 35%.
US10734367B2
A semiconductor package includes upper and lower semiconductor chip packages, and a redistribution wiring layer pattern interposed between the packages. The lower package includes a molding layer in which at least one chip is embedded, and has a top surface and an inclined sidewall surface along which the redistribution wiring layer pattern is formed. The upper and lower packages are electrically connected to through the redistribution wiring layer pattern. A first package may be formed by a wafer level packaging technique and may include a redistribution wiring layer as a substrate, a semiconductor chip disposed on the redistribution wiring layer, and a molding layer on which the lower package, redistribution wiring layer pattern and upper package are disposed.
US10734365B2
A light-emitting device according to an embodiment includes a light-emitting part and an external wiring. The light-emitting part includes: a pair of insulating substrates that has light transmissive property and flexibility; a plurality of light-emitting elements arranged between the pair of insulating substrates; an internal wiring pattern that is provided between the pair of insulating substrates, and is connected to the light-emitting elements; and a resin layer that has light transmissive property and insulating property, and is provided between the pair of insulating substrates. An end of the external wiring is divided into a plurality of wirings having a line width that is narrower than a line width of the internal wiring pattern. An end of the internal wiring pattern is bonded, at an end of the insulating substrates, to the end of the external wiring that is divided into a plurality of wirings by an anisotropic conductive adhesive.
US10734359B2
Apparatuses for providing external terminals of a semiconductor device are described. An example apparatus includes a first group of wiring layers of an internal redistributing layer (iRDL) providing a power supply voltage and a second group of wiring layers of another iRDL providing a ground voltage. The first group of wiring layers providing the power supply voltage from a first side of the semiconductor device to a second side of the semiconductor device opposite to the first side are at least partially separated by at least one cut portion between the first side and the second side.
US10734348B2
A method includes patterning a cavity through a first passivation layer of a first package component, the first package component comprising a first semiconductor substrate and bonding the first package component to a second package component. The second package component comprises a second semiconductor substrate and a second passivation layer. Bonding the first package component to the second package component comprises directly bonding the first passivation layer to the second passivation layer; and reflowing a solder region of a conductive connector disposed in the cavity to electrically connect the first package component to the second package component.
US10734341B2
A via or pillar structure, and a method of forming, is provided. In an embodiment, a polymer layer is formed having openings exposing portions of an underlying conductive pad. A conductive layer is formed over the polymer layer, filling the openings. The dies are covered with a molding material and a planarization process is performed to form pillars in the openings. In another embodiment, pillars are formed and then a polymer layer is formed over the pillars. The dies are covered with a molding material and a planarization process is performed to expose the pillars. In yet another embodiment, pillars are formed and a molding material is formed directly over the pillars. A planarization process is performed to expose the pillars. In still yet another embodiment, bumps are formed and a molding material is formed directly over the bumps. A planarization process is performed to expose the bumps.
US10734340B2
A method for estimating a thickness related to multiple conductive structural elements of an object, the method includes estimating a height difference between an upper surface of a conductive structural element and an upper surface of a photoresists layer portion that surrounds the conductive structural element, to provide multiple height differences; estimating thicknesses of the multiple photoresists layer portions, based at least on the second part of the emitted radiation; and calculating thickness values related to the multiple conductive structural elements, wherein the calculating is based at least on the multiple height differences and on the estimated thickness of the multiple photoresists layer portions.
US10734334B2
The present disclosure describes a coaxial-interconnect structure that is integrated into a semiconductor component and methods of forming the coaxial-interconnect structure. The coaxial interconnect-structure, which electrically couples circuitry of an integrated-circuit (IC) die to traces of a packaging substrate, comprises a signal core elongated about an axis, a ground shield elongated about the axis, and an insulator disposed between the signal core and the ground shield.
US10734333B2
Semiconductor packages including a lateral interconnect having an arc segment to increase self-inductance of a signal line is described. In an example, the lateral interconnect includes a circular segment extending around an interconnect pad. The circular segment may extend around a vertical axis of a vertical interconnect to introduce an inductive circuitry to compensate for an impedance mismatch of the vertical interconnect.
US10734331B2
In a described example, an integrated circuit includes: a semiconductor substrate having a first surface and an opposite second surface; at least one dielectric layer overlying the first surface of the semiconductor substrate; at least one inductor coil in the at least one dielectric layer with a plurality of coil windings separated by coil spaces, the at least one inductor coil lying in a plane oriented in a first direction parallel to the first surface of the semiconductor substrate, the at least one inductor coil electrically isolated from the semiconductor substrate by a portion of the at least one dielectric layer; and trenches extending into the semiconductor substrate in a second direction at an angle with respect to the first direction, the trenches underlying the inductor coil and filled with dielectric replacement material.
US10734327B2
Embodiments of a lead frame and packaged devices thereof, including a lead frame first and second rows of lead fingers respectively connected to first and second sides of the lead frame, the second side opposite the first side; a package body perimeter within which a package body of the packaged semiconductor device is formed; and a first die pad arm, wherein an end of the first die pad arm remains within the package body perimeter and is separated from the package body perimeter by a gap distance; wherein a first outermost lead finger of the first row of lead fingers is adjacent to the first die pad arm.
US10734324B2
A fan-out semiconductor package includes a core member having a first through-hole and including wiring layers; a first semiconductor chip disposed in the first through-hole and having first connection pads formed on a lower side of the first semiconductor chip; a first encapsulant covering the core member and the first semiconductor chip; a connection member disposed below the core member and the first semiconductor chip and including redistribution layers; a first stack chip disposed on the first encapsulant and electrically connected to the wiring layers through a first connection conductor; and a second encapsulant disposed on the first encapsulant and covering the first stack chip. The first semiconductor chip includes DRAM and/or a controller, the first stack chip includes a stack type NAND flash, and the first connection pads of the first semiconductor chip are electrically connected to the wiring layers through the redistribution layers.
US10734323B2
A package structure includes at least one integrated circuit component, an insulating encapsulation, and a redistribution structure. The at least one integrated circuit component includes a semiconductor substrate, an interconnection structure disposed on the semiconductor substrate, and signal terminals and power terminals located on and electrically connecting to the interconnection structure. The interconnection structure is located between the semiconductor substrate and the signal terminals and between the semiconductor substrate and the power terminals, and where a size of the signal terminals is less than a size of the power terminals. The insulating encapsulation encapsulates the at least one integrated circuit component. The redistribution structure is located on the insulating encapsulation and electrically connected to the at least one integrated circuit component.
US10734321B2
An integrated circuit includes a set of active regions in a substrate, a first set of conductive structures, a shallow trench isolation (STI) region, a set of gates and a first set of vias. The set of active regions extend in a first direction and is located on a first level. The first set of conductive structures and the STI region extend in at least the first direction or a second direction, is located on the first level, and is between the set of active regions. The STI region is between the set of active regions and the first set of conductive structures. The set of gates extend in the second direction and overlap the first set of conductive structures. The first set of vias couple the first set of conductive structures to the set of gates.
US10734318B2
A fold in a semiconductor package substrate includes an embedded device that includes orthogonal electrical coupling through the package substrate by a bond-pad via that is configured to couple to a semiconductive device that is mounted on the semiconductor package substrate. The semiconductive device is coupled to the embedded device with the orthogonal electrical coupling.
US10734314B2
Input and output terminals are arranged so as to be adapted for an environment in which they are to be used. A semiconductor module (5) is surface-mounted on a surface wiring layer (30a) of a main substrate (3). A first module terminal group (11) located on a module first side (2a) of the semiconductor module (5) and a first substrate terminal group (301) located on a substrate first side (3a) of the main substrate (3) are connected by a first surface wiring pattern (311) formed in a surface wiring layer (30a). A second module terminal group (12) located on a module second side (2c) and a second substrate terminal group (302) located on a substrate second side (3c) are connected by a second surface wiring pattern (312) formed in the surface wiring layer (30a).
US10734312B2
A packaged integrated circuit (IC) device includes a first set of stacked die having a first IC die, a first inductor in the first IC die, an isolation layer over the first IC die, a second IC die over the isolation layer, and a second inductor in the second IC die aligned to communicate with the first inductor, and a second set of stacked die having a third IC die, a third inductor in the third IC die, a second isolation layer over the third IC die, a fourth IC die over the second isolation layer, and a fourth inductor in the fourth IC die aligned to communicate with the third inductor. The isolation layer extends a prespecified distance beyond a first edge of the second IC die, and the second isolation layer extends a second prespecified distance beyond a first edge of the fourth IC die.
US10734306B2
A heat sink mounting configuration is provided that is configured to prevent the heat sink from damaging ball grid arrays (BGA) of an application specific integrated circuit (ASIC) mounted on a printed circuit board (PCB) when the line card is subjected to vibrations and shocks. The heat sink mounting configuration may include a set of screws configured to be at least partially disposed within the apertures of the heat sink to secure the heat sink to the PCB. The mounting configuration includes a resilient member and a spacer disposed around the screws proximate to the apertures. The resilient members are configured to bias the heat sink against the ASIC to maintain the heat sink in contact with the ASIC. The spacers are configured to prevent the heat sink from impacting the ASIC with forces large enough to damage the BGA when the line card is subjected to vibrations and shocks.
US10734305B2
A thermal conducting sheet, including: a binder resin; insulating-coated carbon fibers; and a thermal conducting filler other than the insulating-coated carbon fibers, wherein a mass ratio (insulating-coated carbon fibers/binder resin) of the insulating-coated carbon fibers to the binder resin is less than 1.30, and wherein the insulating-coated carbon fibers include carbon fibers and a coating film over at least a part of a surface of the carbon fibers, the coating film being formed of a cured product of a polymerizable material.
US10734299B2
A method includes forming a polymer layer covering a metal via in a wafer, grooving the wafer to form a trench, wherein the trench extends from a top surface of the polymer layer into the wafer, and performing a die-saw on the wafer to separate the wafer into a plurality of device dies. A kerf passes through the trench. One of the device dies is placed over a carrier. An encapsulating material is dispensed over and around the device die. The method further includes pressing and curing the encapsulating material. After the encapsulating material is cured, a sidewall of the polymer layer is tilted. A planarization is performed on the encapsulating material until the polymer layer and the metal via are exposed. A redistribution line is formed over and electrically coupled to the metal via.
US10734293B2
Techniques for measuring and/or compensating for process variations in a semiconductor manufacturing processes. Machine learning algorithms are used on extensive sets of input data, including upstream data, to organize and pre-process the input data, and to correlate the input data to specific features of interest. The correlations can then be used to make process adjustments. The techniques may be applied to any feature or step of the semiconductor manufacturing process, such as overlay, critical dimension, and yield prediction.
US10734289B2
A semiconductor device is formed to include a fin structure, a first trench at a first lateral end of the fin, a second trench at a second lateral end of the fin, and a filler filled on a first traverse side of the fin and a second traverse side of the fin. The filler is contained between the first trench and the second trench, and oxidized in-place to cause a stress to be exerted on the first and second traverse sides of the fin, the stress causing the fin to exhibit a tensile strain in a lateral running direction of the fin.
US10734286B1
A method is presented for attaining different gate dielectric thicknesses across a plurality of field effect transistor (FET) devices. The method includes forming interfacial and high-k dielectric layers around alternate semiconductor layers of the plurality of FET devices, pinching off gaps between the alternate semiconductor layers by depositing a high work function capping layer over the plurality of FET devices, selectively removing the high work function capping layer from a first set of the plurality of FET devices, depositing a sacrificial capping layer, with the sacrificial capping layer leaving gaps between the alternate semiconductor layers of the first set of the plurality of FET devices, depositing an oxygen blocking layer, and annealing the plurality of FET devices to create different gate dielectric thicknesses for each of the plurality of FET devices.
US10734277B2
Back end of line metallization structures and processes of fabricating the metallization structures generally include a top via integration scheme. The top via integration scheme integrally forms the via on top of trench. Thus, the via is fully aligned and can be of a desired critical dimension.
US10734276B2
A planarization method is provided and includes the following steps. A substrate having a main surface is provided. A protruding structure is formed on the main surface. An insulating layer is formed conformally covering the main surface and the top surface and the sidewall of the protruding structure. A stop layer is formed on the insulating layer and at least covers the top surface of the protruding structure. A first dielectric layer is formed blanketly covering the substrate and the protruding structure and a chemical mechanical polishing process is then performed to remove a portion of the first dielectric layer until a portion of the stop layer is exposed thereby obtaining an upper surface. A second dielectric layer having a pre-determined thickness is formed covering the upper surface.
US10734274B2
A process separates a main body of a semiconductor substrate from a functional layer. The method includes the steps of implanting ions into a semiconductor substrate through a top surface of the semiconductor substrate to form an ion damage layer underneath the top surface of the semiconductor substrate. After the ions are implanted into the semiconductor substrate, a functional layer is formed on the top surface of the semiconductor substrate. The main body of the semiconductor substrate is then separated from the functional layer. The method also includes forming the functional layer on the semiconductor substrate after ion implanting and then separating the functional layer from the main body of the substrate at the ion damage layer. This method avoids bonding in SOI and can thus reduce process steps and cost.
US10734273B2
A semiconductor device includes: a pair of wire patterns configured to extend in a first direction and formed on a substrate to be spaced apart from each other in a second direction, the pair of wire patterns disposed closest to each other in the second direction; a gate electrode configured to extend in the second direction on the substrate, the gate electrode configured to surround the wire patterns; and first isolation layers configured to extend in the first direction between the substrate and the gate electrode and formed to be spaced apart from each other in the second direction, the first isolation layers overlapping the pair of wire patterns in a third direction perpendicular to the first and second directions.
US10734264B2
A semiconductor wafer container assembly includes a container defining an exterior and defining an interior having a wafer storage area adapted to support one or more semiconductor wafers. The container also defines an opening in the container between the exterior and the interior. The container has a door and a latching mechanism to sealingly secure the door closed, and the door is openable for access to the wafer storage area. A passive getter module is removably secured with respect to the exterior of the container by substantially rigid connection structure that is a part of or extends from substantially rigid getter module housing. Getter material is disposed within the housing to decrease concentration of contaminants within the wafer storage area of the container via the access opening and the opening in the container.
US10734263B2
Presented herein is a device processing boat comprising a base and at least one unit retainer disposed in the base. The device further comprises a cover having at least one recess configured to accept and retain at least one unit. The at least one recess is aligned over, and configured to hold the at least one unit over, at least a portion of the at least one unit retainer. The cover is retained to the device processing boat by the at least one unit retainer. At least one pressure sensor having at least one sensel is disposed in the base. The sensel is configured to sense a clamping force applied by the cover to the at least one unit.
US10734260B2
A die sorting apparatus includes a fixing mechanism for fixing a wafer having a plurality of dies, a positioning mechanism including an indicator for selecting a die of the wafer using die coordinates, an ejection mechanism below the wafer for applying a force to the selected die, a moving mechanism mechanically coupled to the positioning mechanism and the ejection mechanism for aligning the positioning mechanism with the ejection mechanism according to the die coordinates. The ejection mechanism includes an ejection shaft, a pin driven by the ejection shaft to apply the force to the selected die, and a pin driving device for moving the pin up and down through the ejection shaft. The die sorting apparatus also includes a die pickup device mounted in parallel to or integrated in the positioning mechanism for picking up the selected die that is separated form the wafer through the pin.
US10734248B2
A printed circuit board according to an embodiment includes: an insulating layer; a first pad disposed on a first surface of the insulating layer; a first conductive layer disposed on the first pad and including gold (Au); a second pad disposed on a second surface of the insulating layer; and a second conductive layer disposed on the second pad and including gold (Au), wherein the first conductive layer is a conductive layer connected to a wire, the second conductive layer is a conductive layer connected to a solder, and the first conductive layer is thicker than the second conductive layer.
US10734239B2
Directed self-assembly (DSA) using block copolymers (BCPs) is emerging as a viable alternative to photolithography for creating features 10 nm and smaller. Block copolymers with balanced surface energy between the polymer blocks, tunable χ, and tunable glass transition temperatures (Tg) have been formulated. The block copolymers can achieve perpendicular orientation by simple thermal annealing due to the surface energy balance between the polymer blocks, which allows avoiding solvent annealing or top-coat. The χ value can be tuned up to achieve L0 as low as 12 nm for lamellar-structured BCPs and hole/pillar size as small as 6 nm for cylinder-structured BCPs. The Tg of the BCPs can also be tuned to lower than those of PS-b-PMMA standards. The enhanced polymer chain mobility resulting from the decreased Tg of the block copolymer may help with improving the kinetics of BCP self-assembly during the thermal annealing.
US10734222B2
A semiconductor stack includes a substrate made of silicon carbide, and an epi layer disposed on the substrate and made of silicon carbide. An epi principal surface, which is a principal surface opposite to the substrate, of the epi layer is a carbon surface having an off angle of 4° or smaller relative to a c-plane. In the epi principal surface, a plurality of first recessed portions having a rectangular circumferential shape in a planar view is formed. Density of a second recessed portion that is formed in the first recessed portions and is a recessed portion deeper than the first recessed portions is lower than or equal to 10 cm−2 in the epi principal surface.
US10734219B2
Examples of a plasma film forming method include repeating feeding material gas onto a substrate placed on a susceptor via a shower head provided to oppose the susceptor, performing plasma film formation on the substrate by applying high frequency power to the shower head while providing reactant gas onto the substrate, and performing post-purge of discharging the gas used in the plasma film formation while heating the shower head, for a time longer than 0.1 seconds, a plurality of times in this order.
US10734214B2
An ion source adapter configured to enable a mass spectrometer, used with a voltage applied to a nebulizer side of an ion source configured to generate an ion, to be used with the nebulizer side grounded, the ion source adapter comprising a tube inserted between an ion introduction port of a capillary of the mass spectrometer and the nebulizer, the tube being formed of an insulator and allowing ions to pass through an interior thereof; a fixing tool configured to align and fix a mass spectrometer side of the tube and the ion introduction port of the capillary; and an electrode configured to apply a voltage to a nebulizer side of the tube, wherein outer peripheries of the nebulizer side and/or the mass spectrometer side of the tube are coated with a conductor, and are used for electric conduction.
US10734213B2
An intermittent sample inlet device and methods for use of the intermittent sample inlet device are described that include an orifice plate with an entrance orifice and a rotating skimmer with a skimmer orifice, where the rotating skimmer is disposed between the orifice plate and a vacuum chamber wall. The rotating skimmer rotates so that the skimmer orifice intermittently aligns with the entrance orifice and allows an ion sample to pass through to a mass analyzer.
US10734209B2
Disclosed herein are internal standard compositions, a plurality of calibration standards, and one or more kits for use with mass spectrometry, particularly for use with an inductively coupled plasma mass spectrometer capable of simultaneous detection of a large number of ionization products over a large range of masses. Methods of using these reagent materials for the simultaneously detection of absolute concentrations of a plurality of elements in a liquid sample.
US10734208B2
An MS2 analysis for one precursor ion is performed to collect data on each micro area within a measurement target area (S1). A plurality of product ions are extracted based on those data (S2), and a mass spectrometric (MS) imaging graphic is created for each m/z of the product ion (S3). Hierarchical cluster analysis is performed on the created MS imaging graphics to group the product ions based on the similarity of the graphics (S4). Product ions having similar distributions are sorted into the same group. Such a group of ions can be considered to have originated from the same compound. Accordingly, the intensity information of a plurality of product ions is totaled in each group and for each micro area (S5), and an MS imaging graphic is created based on the totaled intensity information (S6). Even if there are a plurality of compounds overlapping the precursor ion, the influence of the overlapping can be eliminated through those steps. Thus, a graphic having a higher level of SN ratio, sensitivity and dynamic range than an MS imaging graphic obtained at a single product ion can be created and displayed.
US10734204B2
There is disclosed a method for cleaning a component of a plasma processing apparatus which is disposed in an inner space defined by a processing chamber of the plasma processing apparatus. The cleaning method comprises: forming a film on the surface of the component, wherein a compound forming the film is generated by polymerization of a first compound contained in a first gas and a second compound contained in a second gas, the first compound being isocyanate and the second compound being amine or a compound having a hydroxyl group; transferring the component from the processing chamber to a heating chamber after substrate treatment is performed in the inner space; and heating the component so that depolymerization of the compound forming the film occurs.
US10734203B2
A plasma processing apparatus comprises a base including an electrode body having a seat surface for setting a substrate held on a conveying carrier, and a platform for supporting the electrode body, and a lid configured to be moved up and down relative to the base, wherein the lid is moved down and appressed on the platform to define a closed space and a plasma is generated within the closed space to implement a plasma processing for the substrate set on the seat surface. The substrate is held on the holding sheet and set on the seat surface with the holding sheet therebetween. The plasma processing apparatus further comprises a guide being provided along a circumference of the electrode body for alignment of the frame, and a cover provided with the lid for covering at least the frame of the conveying carrier when the closed space is defined.
US10734202B2
An article includes a body that is coated with a ceramic coating. The ceramic coating may include Y2O3 in a range between about 45 mol % to about 99 mol %, ZrO2 in a range between about 1 mol % to about 55 mol %, and Al2O3 in a range between about 1 mol % to about 10 mol %. The ceramic coating may alternatively include Y2O3 in a range between about 45 mol % to about 99 mol % and Al2O3 in a range between about 1 mol % to about 10 mol %. The ceramic coating may alternatively include Y2O3 in a range between about 45 mol % to about 99 mol % and ZrO2 in a range between about 1 mol % to about 55 mol %.
US10734200B2
A chemical processing system and a method of using the chemical processing system to treat a substrate with a mono-energetic space-charge neutralized neutral beam-activated chemical process is described. The chemical processing system comprises a first plasma chamber for forming a first plasma at a first plasma potential, and a second plasma chamber for forming a second plasma at a second plasma potential greater than the first plasma potential, wherein the second plasma is formed using electron flux from the first plasma. Further, the chemical processing system comprises a substrate holder configured to position a substrate in the second plasma chamber.
US10734186B2
An x-ray device is presented. The x-ray device includes a cathode configured to emit an electron beam. Also, the x-ray device includes an anode configured to rotate about a longitudinal axis of the x-ray device and positioned to receive the emitted electron beam, where the anode includes a target element disposed on an anode surface of the anode and a track element embedded in the target element, where the track element is configured to generate x-rays in response to the emitted electron beam impinging on a focal spot on the track element, where at least a portion of the track element is configured to transition from a first phase to a second phase based on heat generated in at least a portion of the track element, and where at least the portion of the track element is configured to distribute the generated heat across the anode.
US10734184B1
A method of manufacturing a multi-layer image intensifier wafer includes fabricating first and second glass wafers, each having an array of cavities that extend between respective openings in first and second surfaces of the respective glass wafer; doping a semiconductor wafer to generate a plurality of electrons for each electron that impinges a first surface of the semiconductor wafer and to direct the plurality of electrons to a second surface of the semiconductor wafer, bonding a photo-cathode wafer to the first glass wafer; bonding the semiconductor wafer between the first and second glass wafers, and bonding the second glass wafer between the semiconductor wafer and an anode wafer (e.g., a phosphor screen or other electron detector). A section of the multi-layer image intensifier wafer may be sliced and evacuated to provide a multi-layer image intensifier.
US10734181B1
A method for making a carbon nanotube field emitter is provided. At least one carbon nanotube wire and at least two electrodes are provided. The at least one carbon nanotube wire is heated to form at least one graphitized carbon nanotube wire. The at least one graphitized carbon nanotube wire comprises a first end and a second end, and the first end is opposite to the second end. The at least two electrodes are welded to fix the first end between the at least two electrodes. welding the at least two electrodes to fix the first end between the at least two electrodes. The second end of the at least one graphitized carbon nanotube wire is exposed from the at least two electrodes as an electron emission end.
US10734179B2
A method and an apparatus for controlling a circuit breaker in an electrical energy supply network. A switching signal is generated by a protective or control device of the energy supply network and the switching signal is transmitted to a control unit of the circuit breaker. The control unit is caused to open the switching contacts of the circuit breaker upon reception of the switching signal. In order to ensure a switching operation which is as fast as possible even in those energy supply networks in which phases of the current to be switched by a circuit breaker which are free of zero crossings can occur, a current flowing through the circuit breaker is recorded and is checked for the occurrence of zero crossings. The transmission of the signal for opening the switching contacts is prevented until at least one zero crossing has been detected.
US10734177B2
The present disclosure illustrates an electromagnetic relay device and a control method thereof. In the electromagnetic relay device, a control circuit respectively provides driving power to switch on the two electromagnetic relay units disposed adjacent to each other, and then provides the first holding power and the second holding power, lower than the driving power, to the two electromagnetic relay units after the two electromagnetic relay units are switched on, thereby maintaining the two electromagnetic relay units in the switched-on status. When the electromagnetic relay unit receiving the second holding power is tripped because of the environmental factor, the electromagnetic relay unit receiving the second holding power generates and outputs the trip feedback signal to the control circuit, so that the control circuit increases the first holding power upon receipt of the trip feedback signal. The second holding power is lower than or equal to the first holding power.
US10734171B2
A lock assembly for a switch device of an electrical power distribution system includes a first lock and a second lock. The lock assembly also includes a connector arranged to inhibit movement of the first lock when the switch device is in a first position and inhibit movement of the second lock when the switch device is in a second position. The lock assembly further includes a guard coupled to at least one of the first lock and the second lock. The guard is positionable between a first position in which the guard allows access to an actuating mechanism of the switch device and a second position in which the guard inhibits access to the actuating mechanism. The guard is moveable between the first position and the second position when at least one of said first lock and said second lock is rotated.
US10734168B2
Provided is a cellulose thin film electrode comprising a silver nano dendrite and a method of manufacturing the same. The method of manufacturing a cellulose thin film electrode comprising a silver nano dendrite comprises: forming the cellulose thin film electrode comprising a silver nano dendrite by soaking a reaction metal to which a thin film comprising silver nitrate and cellulose acetate is attached, in a reaction solution; and separating the cellulose thin film electrode from the reaction metal and then removing the reaction metal from the reaction solution.
US10734162B2
To provide a capacitor device capable of preventing thermal interference between a filter capacitor and a plurality of smoothing capacitors. A capacitor device provided in an energization circuit between a power source and a semiconductor module as a power supply device includes a filter capacitor for removing a noise included in a current supplied from a power input terminal, a plurality of smoothing capacitors for smoothing a voltage, and a capacitor case that houses the filter capacitor and the plurality of smoothing capacitors, and a first gap between the filter capacitor and a smoothing capacitor provided at a position closest to the filter capacitor among the plurality of smoothing capacitors is configured to be larger than a second gap between two smoothing capacitors adjacent to each other among the plurality of smoothing capacitors.
US10734148B2
An electromagnetic holding magnet and a method for manufacturing the same, and an electromagnetic locking element that, that in a preferred embodiment, is a lock in a container of an oxygen emergency supply system of an aircraft. The electromagnetic holding magnet includes a yoke and a retaining plate interacting with the yoke as an anchor. At least one permanent magnet generates a magnetic retaining flux in the yoke that includes a first yoke leg and a second yoke leg as well as a middle pole. The middle pole is surrounded in sections by a magnetic coil. The first and second yoke legs are arranged symmetrically in relation to the middle pole and the magnetic coil.
US10734146B2
The present disclosure discloses a state-of-charge indication method. The method includes: acquiring a current ratio of a remaining battery capacity to a total battery capacity; determining a target curvature angle of a flexible display screen associated with a terminal based at least on the current ratio; and controlling the flexible display screen to present the target curvature angle.
US10734142B2
In a method for manufacturing an electronic component, a step of providing an outer electrode includes a step of providing a sintered layer including a sintered metal, a step of providing a reinforcement layer not containing Sn but including Cu or Ni, a step of providing an insulation layer, and a step of providing a Sn-containing layer. The sintered layer extends from each end surface of an element assembly onto at least one main surface thereof to cover Bich. The reinforcement layer covers the sintered layer entirely. The insulation layer is directly provided on the reinforcement layer at each end surface of the element assembly and defines a portion of a surface of the outer electrode. The Sn-containing layer covers the reinforcement layer except for a portion of the reinforcement layer that is covered by the insulation layer, and defines another portion of the surface of the outer electrode.
US10734138B2
A configuration and a method of constructing a high-temperature superconductor tape including a plurality superconducting filaments sandwiched between a substrate and an overlayer comprising compliant material extending to the substrate through gaps between each superconducting filament thereby isolating each superconducting filament.
US10734137B2
A composite cable is composed of a power supply wire, which includes a twisted wire pair aggregate, which are being formed by laying a plurality of twisted wire pairs together, a plurality of coaxial wires, and a plurality of signal wires, which are each smaller in outer diameter than the power supply wire and the plurality of coaxial wires. The plurality of coaxial wires and the plurality of signal wires are being laid helically over an outer periphery of the power supply wire, and each of the plurality of coaxial wires is being arranged in contact with an outer periphery of the power supply wire, and is being arranged at equally spaced intervals in a circumferential direction of the power supply wire, while each of the plurality of signal wires is being arranged in such a manner as to remain separate from the power supply wire.
US10734130B2
The invention relates to an elongated electrically conductive copper-aluminum bimetal element, a cable comprising at least one such elongated electrically conductive element, a process for preparing said elongated electrically conductive element and said cable, and a device comprising such an electric cable and at least one metal connector.
US10734121B2
The invention relates to sealing a fuel rod composite cladding tube composed of silicon carbide regardless of the fuel rod cladding design architecture (e.g., monolithic, duplex with monolithic SiC on the inside and a composite made with SiC fibers and SiC matrix on the outside) preferably with sealed SiC end plug caps, additionally sealed with an interior braze and exterior SiC final coating, thus providing a double sealed end plug barrier effective at retaining gas tightness and providing mechanical strength for the sealed end joint while providing high chemical resistance.
US10734118B2
Embodiments develop a predictive dose-volume relationships for a radiation therapy treatment is provided. A system includes a memory area for storing data corresponding to a plurality of patients, wherein the data comprises a three-dimensional representation of the planning target volume and one or more organs-at-risk. The data further comprises an amount of radiation delivered to the planning target volume and the one or more organs-at-risk. The system further includes one or more processors programmed to access, from the memory area, the data and to develop a model that predicts dose-volume relationships using the three-dimensional representations of the planning target volume and the one or more organs-at-risk. The model is being derived from correlations between dose-volume relationships and calculated minimum distance vectors between discrete volume elements of the one or more organs-at-risk and a boundary surface of the planning target volume.
US10734116B2
Systems, methods and software are provided that include a cloud, internet, and/or browser, application, or server based medical image sharing method and system that shares at least one 2D image data file through an internet browser that can generate rotatable and manipulatable 3D and/or 4D images by additional users without additional computer software, plug-ins, or hardware, to render 3D and 4D medical images for remote collaborative analysis, discussion, and/or diagnoses and that simulate or facilitate imaging of medical procedures for purposes of optimized performance, simulation, training and/or accreditation; as well as generating 3D and/or 4D imaging from 2 or more 2D images and/or projections for such use as semi-automated and/or fully automated, network and/or web-based, 3D and/or 4D imaging.
US10734114B2
Systems and methods are provided for eye health and vision examinations. A customer diagnostic center is configured to generate customer examination data pertaining to an examination of a customer's eye. The customer diagnostic center provides a user interface for communicating with a customer and ophthalmic equipment for administering tests to the customer. A diagnostic center server is configured to receive the customer examination data from the customer diagnostic center over a network and allow the customer examination data to be accessed by an eye-care practitioner. A practitioner device associated with the eye-care practitioner is configured to receive the customer examination data from the diagnostic center server and display at least a portion of the customer examination data to the eye-care practitioner. Customer evaluation data is generated pertaining to the eye-care practitioner's evaluation of the customer examination data. An eye health report is provided to the customer via the network.
US10734100B2
Tissue sample management systems include a central network, a medical professional system, and a pathology lab system for processing a tissue sample in a matrix having a sectionable code. At least the pathology lab system includes at least one imaging device, and the central network is configured to process images from the at least one imaging device to identify and record at least the sectionable code of the matrix. Methods for tissue sample processing include providing a matrix having a sectionable code and measurement marks, the matrix for receiving a tissue sample, and identifying the sectionable code from an image taken of the tissue sample in the matrix. Tissue sample-receiving matrices include a sectionable alphanumeric code or bar code, a tissue sample receptacle, and measurement marks formed along a sidewall thereof. The matrices include one or more proteins and one or more lipids.
US10734098B2
Methods, systems, and apparatuses for monitoring health of a catalyst in a plant by retrieving plant data, comparing the plant data to equilibrium conditions, and sending a notification comprising an indication of the health of the catalyst. A plant may be configured to produce a product using a catalyst. A plant monitoring computing platform may be configured to receive, from sensors and/or computing devices of the plant, plant data and/or lab data corresponding to the catalyst. The plant monitoring computing platform may determine equilibrium conditions corresponding to the plant. Based on a comparison of the plant data, the equilibrium conditions, and/or target equilibrium conditions, the plant monitoring computing platform may send a notification. The notification may comprise an indication of the performance of the catalyst.
US10734094B2
Aspects relate to calculating energy expenditure values from an apparatus configured to be worn on an appendage of a user. Steps counts may be quantified, such as by detecting arm swings peaks and bounce peaks in motion data. A search range of acceleration frequencies related to an expected activity may be established. Frequencies of acceleration data within a search range may be analyzed to identify one or more peaks, such as a bounce peak and an arm swing peak. Novel systems and methods may determine whether to utilize the arm swing data, bounce data, and/or other data or portions of data to quantify steps. The number of peaks (and types of peaks) may be used to choose a step frequency and step magnitude. At least a portion of the motion data may be classified into an activity category based upon the quantification of steps.
US10734088B2
A CMOS anti-fuse cell is disclosed. In one aspect, an apparatus includes an N− well and an anti-fuse cell formed on the N− well. The anti-fuse cell includes a drain P+ diffusion deposited in the N− well, a source P+ diffusion deposited in the N− well, and an oxide layer deposited on the N− well and having an overlapping region that overlaps the drain P+ diffusion. A control gate is deposited on the oxide layer. A data bit of the anti-fuse cell is programmed when a voltage difference between the control gate and the drain P+ diffusion exceeds a voltage threshold of the oxide layer and forms a leakage path from the control gate to the drain P+ diffusion. The leakage path is confined to occur in the overlapping region.
US10734076B2
A semiconductor memory cell and arrays of memory cells are provided In at least one embodiment, a memory cell includes a substrate having a top surface, the substrate having a first conductivity type selected from a p-type conductivity type and an n-type conductivity type; a first region having a second conductivity type selected from the p-type and n-type conductivity types, the second conductivity type being different from the first conductivity type, the first region being formed in the substrate and exposed at the top surface; a second region having the second conductivity type, the second region being formed in the substrate, spaced apart from the first region and exposed at the top surface; a buried layer in the substrate below the first and second regions, spaced apart from the first and second regions and having the second conductivity type; a body region formed between the first and second regions and the buried layer, the body region having the first conductivity type; a gate positioned between the first and second regions and above the top surface; and a nonvolatile memory configured to store data upon transfer from the body region.
US10734069B2
Devices and methods for the detection of magnetic fields, strain, and temperature using the spin states of a VSi− monovacancy defect in silicon carbide, as well as quantum memory devices and methods for creation of quantum memory using the spin states of a VSi− monovacancy defect in silicon carbide.
US10734063B2
A semiconductor device includes: a first cell; a second cell; a first match line and a second match line; a first search line pair, first data being transmitted through the first search line pair; a second search line pair, second data being transmitted through the second search line pair; a first logical operation cell connected to the first search line pair and the first match line, and configured to drive the first match line based on a result of comparison between information held by the first and second cells and the first data; and a second logical operation cell connected to the second search line pair and the second match line, and configured to drive the second match line based on a result of comparison between information held by the first and second cells and the second data.
US10734060B2
Apparatuses for receiving an input data signal are described. An example apparatus includes: a plurality of data input circuits and an internal data strobe generator. Each data input circuit of the plurality of data input circuits includes: an amplifier that receives data from a data terminal, and latches the data in an enable state and refrains from latching data in a disable state; and a voltage control circuit coupled to a tail node of the amplifier and provides a first voltage to the tail node during the enable state, and further provides a second voltage different from the first voltage to the tail node in a first mode and to sets the tail node in a floating state in a second mode during the disable state. The internal data strobe signal generator provides a plurality of internal data strobe signals to the plurality of corresponding data input circuits respectively.
US10734058B2
A memory device includes an error correction code (ECC) block suitable for performing an ECC operation, and generating a flag signal when an error is detected and corrected through the ECC operation in data read from a memory cell array, and a refresh control block suitable for comparing an active row address with a target address in response to the flag signal, and refreshing data of a neighboring address of the target address based on a comparison result.
US10734042B2
A semiconductor device includes an input/output (I/O) control signal generation circuit, a pipe circuit and an auto-pre-charge signal generation circuit. The I/O control signal generation circuit generates an input control signal, an output control signal and an internal output control signal. The pipe circuit latches an internal command/address signal based on the input control signal and outputs the latched internal command/address signal as a latch signal. The auto-pre-charge signal generation circuit generates an auto-pre-charge signal from the latch signal and the internal latch signal.
US10734030B2
A recorded data processing method is performed that includes generating synchronization information indicating a relationship of recorded data with respect to reference data on a time axis by comparing the recorded data including video recorded by a recording device and the reference data that act as a reference for the recorded data on a time axis and that represent audio or video; and transmitting from a terminal source material data that include video that corresponds to the recorded data and the synchronization information that was generated to an editing device that generates content including a plurality of mutually synchronized videos from a plurality of the source material data.
US10734029B2
A signal processing apparatus for generating a playback audio signal to be played back together with a slow-motion image based on image capturing in a capturing target region, obtains a first audio signal containing a sound in the capturing target region, and based on sound acquisition in a first period shorter than a capturing period corresponding to the slow-motion image, obtains a second audio signal containing a sound in a peripheral region of the capturing target region, and based on sound acquisition in a second period longer than the capturing period, and synthesizes the first audio signal and the second audio signal, thereby generating the playback audio signal to be played back together with the slow-motion image.
US10734022B2
According to one embodiment, a magnetic disk device includes a disk, a first head, a second head, an actuator configured to position the first head and the second head over the disk, and a controller configured to control the actuator based on a first value having a first waveform suppressing a disturbance component, wherein the controller is configured to invert, in the first waveform, a polarity of a third waveform succeeding a first timing with respect to a polarity of a second waveform preceding the first timing in a case where the first head is changed to the second head at the first timing.
US10734014B2
The present disclosure generally relates to data storage devices, and more specifically, to a magnetic media drive employing a magnetic recording head. The head includes a main pole at a media facing surface (MFS), a trailing shield at the MFS, and a heavy metal layer disposed between the main pole and the trailing shield at the MFS. Spin-orbit torque (SOT) is generated from the heavy metal layer and transferred to a surface of the main pole as a current passes through the heavy metal layer in a cross-track direction. The SOT executes a torque on the surface magnetization of the main pole, which reduces the magnetic flux shunting from the main pole to the trailing shield. With the reduced magnetic flux shunting from the main pole to the trailing shield, write-ability is improved.
US10734007B2
A codec allowing for switching between different coding modes is improved by, responsive to a switching instance, performing temporal smoothing and/or blending at a respective transition.
US10733989B2
A method for proximity-based voice activation, the method may include sensing a voice command, detecting whether a person outputted the voice command while being in proximity to a voice activated device; determining whether to execute, by the voice activated device, the voice command based, at least in part, on the determination whether the person outputted the voice command while being in proximity to the voice activated device; and executing the voice command when determining to execute the voice command.
US10733987B1
Systems, methods, and devices related to providing content items from a collection of content items. The embodiments disclosed enhance user experience by keeping track of which content items were already played to a user, and skipping those content items automatically. The embodiments disclosed herein also can enable a user to limit playing of content items to those that have been added since the last time contents items from the collection of content items were played. If the user selects to receive additional content items after receiving the newly added items, the system can provide the older unplayed content items after the newly added content news items have been played.
US10733980B2
A recurrent neural network (RNN) is trained to identify split positions in long content, wherein each split position is a position at which the theme of the long content changes. Each sentence in the long content is converted to a vector that corresponds to the meaning of the sentence. The sentence vectors are used as inputs to the RNN. The high-probability split points determined by the RNN may be combined with contextual cues to determine the actual split point to use. The split points are used to generate thematic segments of the long content. The multiple thematic segments may be presented to a user along with a topic label for each thematic segment. Each topic label may be generated based on the words contained in the corresponding thematic segment.
US10733969B2
A protective enclosure for an effect device includes a substantially rectangular shaped base portion and a substantially cuboid shaped upper portion. The base portion and upper portion communicate with one another and form a common receiving space to enclose an effect device. The base portion includes two opposite side walls, and each side wall has a respective opening to each provide access to the receiving space. An upper wall extends laterally across the base portion side walls, and a foot switch opening is disposed along the upper wall.
US10733961B2
A display apparatus and a control method thereof are disclosed. The display apparatus includes a display unit comprising a plurality of displays; an image signal receiver; and a controller configured to: in response to an image source being changed from a first image source to a second image source while a first image of the first image source is being displayed on the display unit, determine whether the displays are ready to process an image signal of the second image source, and display one of the first image and a second image corresponding to the image signal of the second image source on the display unit based on a result of the determining.
US10733958B1
A circuit for performing demura operation for a display panel of a computerized device is provided. The circuit includes an arithmetic unit for converting input luminance codes (e.g., grayscale codes) that correspond to a first group of pixels to output luminance codes by computation, and a lookup table unit having a storage module for mapping input luminance codes that correspond to a second group of pixels to output luminance codes. Such a configuration uses the lookup table unit to replace some computations for demura operation, thereby reducing time and power required for demura operation.
US10733952B2
A multiplexer applied to a display device includes: a plurality of switching units, electrically coupled to a data driver and a plurality of pixel units, where the switching units are adapted to receive a plurality of input display data signals output by the data driver, and the switching units output a plurality of output display data signals to the electrically coupled pixel units, where each of the switching units includes a plurality of switch units, configuration locations of the switch units in each of the switching units are the same as, and some of the switch units configured at a same configuration location in the different switching units are electrically coupled to different control signal lines and have different wiring lengths, where the wiring lengths are distances between the switch units and the control signal lines.
US10733950B2
A gate driving circuit includes: a plurality of stages to provide gate signals to gate lines of a display panel, a k-th stage, where k is a natural number greater than or equal to 2, from among the plurality of stages being configured: to receive a clock signal, a (k−1)th carry signal from a (k−1)th stage, a (k+1)th carry signal from a (k+1)th stage, a (k+2)th carry signal from a (k+2)th stage, a first voltage, and a second voltage, the clock signal being a pulse signal in which a high voltage and a third voltage appear periodically, and the third voltage having a lower voltage level than those of the first voltage and the second voltage; and to output a k-th gate signal and a k-th carry signal.
US10733942B2
Aspects of the subject technology relate to electronic devices with displays and ambient light sensors. An electronic device modifies the color of images to be displayed based on measured ambient light color. The modification is performed in a perceptually uniform color space and includes a determination of a bleaching effect of reflected ambient light, and a determination of a color correction factor to be applied within the perceptually uniform color space, based on the determined bleaching effect. The modification may also include an application of a strength factor that mitigates out-of-gamut colors in color compensated images.
US10733941B2
A pixel includes a first transistor connected between a line supplying a power supply voltage and a second node, and providing a driving current corresponding to a data voltage to a light emitting element based on a voltage of a first node, a third transistor connected between the first node and a line supplying a reference voltage, and generating a sampling current based on a difference between a voltage of the second node and the reference voltage, a second transistor connected between the line supplying the power supply voltage and the first node, adjusting the voltage of the first node to generate the sampling current based on a voltage of a third node, a fourth transistor transferring the power supply voltage to the third node, a fifth transistor transferring the data voltage to the second node, and a capacitor connected between the first node and the third node.
US10733936B2
An organic light-emitting display device and a method of driving the same are disclosed. The organic light-emitting display device includes a display panel including sub-pixels, a power supply configured to output a voltage for driving the sub-pixels, a selective driver configured to generate a control signal to selectively drive a drive transistor of the sub-pixels between first and second driving schemes, wherein the drive transistor is driven in a saturation region in the first driving scheme, and is driven in a linear region in the second driving scheme, and a gamma change driver configured to change a gamma based on the driving scheme selected by the selective driver.
US10733931B2
Disclosed in the present invention is a device comprising: a housing including a first surface facing a first direction and a second surface facing a second direction; a transparent cover formed on at least a portion of the first surface of the housing; a display disposed between the transparent cover and the second surface; a sensor disposed between the display and the second surface; and a control circuit, electrically connected to the sensor, for controlling the sensor, wherein the display can comprise: a first region including a plurality of pixels capable of displaying color; and a second region aligned on at least a portion of the sensor such that light acquired from the outside of the electronic device passes through the sensor. The present invention can have various examples.
US10733930B2
A multi-layer device including device layers connected by an interposer. For example, an electronic display may include a light emitting diode (LED) layer including LEDs and a control circuitry layer to provide control signals to the LEDs. The electronic display further includes an interposer positioned between the LED layer and the control circuitry layer. The interposer includes a substrate and an array of conductive pillars extending through the substrate. The conductive pillars electrically connect the LED layer with the control circuitry layer. Bonding layers may be formed on the interposer and a corresponding side of a device layer to facilitate a hybrid bonding process that electrically connects contacts of the device layer to the conductive pillars and joins the bonding layers to attach the device layer to the interposer.
US10733925B2
A plurality of virtual viewpoint images corresponding to positions and directions of a plurality of virtual viewpoints are displayed on an operation screen for an operation associated with the position and direction of the virtual viewpoint. The virtual viewpoint image corresponding to the virtual viewpoint selected as a position and direction operation target among the plurality of virtual viewpoints is generated based on a plurality of captured images obtained by capturing an image capturing target region by a plurality of cameras, and is transmitted to another apparatus.
US10733924B2
A method of displaying a light field via a light field display device, the light field display device comprising an array of light field display elements, the method comprising the steps of: (a) estimating a gaze direction, and thereby a foveal field of view, of at least one eye of at least one viewer of the light field display device; (b) displaying, via each display element and at a first angular sampling rate, at least part of a light field view image; and (c) displaying, via at least one of the display elements and at a second angular sampling rate, a partial foveal light field view image, the partial foveal light field view image covering at least part of the foveal field of view of the at least one eye, the second angular sampling rate higher than the first angular sampling rate.
US10733922B2
A display device includes: a substrate; pixels provided in a display area of the substrate; signal lines provided on the substrate and connected to the pixels; and a pad portion provided in a peripheral area and including pads. The signal lines include a first crack detecting line provided in the peripheral area and connected to a first test voltage pad, first data lines including first ends connected to the first crack detecting line through corresponding first transistors and second ends connected to corresponding pixels from among the pixels, and first connecting wires for connecting the first data lines and pads corresponding to the first data lines from among the pads, and the first connecting wires are provided on one layer from among at least two layers.
US10733914B2
A pattern-adhesive label-sheet comprises at least one label made of a face stock and a release liner. The label includes a label head with a first adhesive applied in a first pattern, a label body with a second adhesive applied in a second pattern, and a label tab. In some embodiments, at least part of the label tab overhangs the release liner. In some embodiments, a silicone coating can be applied to the label body and/or release liner.
US10733906B2
A texture-inducible substrate includes a backplate, a deformable membrane positioned in front of the backplate to form a gap therebetween, and a ferrofluid contained in the gap. The substrate also includes an electromagnet positioned on the backplate to induce, when activated, a local volume of the ferrofluid to expand in volume and increase in viscosity so as to locally deform and raise an adjacent section of the deformable membrane.
US10733905B2
A language learning system is provided. The language learning system includes a computing device and a language learning file. The computing device includes a general user interface and a central processing unit. The language learning file is run by the central processing unit and includes multilingual data, a language display module, and a language learning module. The multilingual data includes a graphical constant element and dynamic lexical elements corresponding to the graphical constant element and having native language data and secondary language data translating from the native language data. The display module displays the graphical constant element and a native language element of the native language data through the general user interface in juxtaposed position. The language learning module switches between displays of the native language element with a secondary language element of the secondary language data.
US10733896B2
Methods and apparatus for drone collision avoidance. Processing circuitry of a drone extracts information from an encoded image captured by a detection device with a field view overlapping the encoded image. Based on the extracted information a determination is made whether a collision will occur on the flight trajectory of the drone with an external source. The flight trajectory of the drone is then altered to avoid a collision.
US10733894B1
A direct-broadcast remote identification (RID) device attachable to an unmanned aircraft system (UAS) encodes identifier signals based on a unique identifier of the UAS and position data, e.g., the current and originating (launch) positions of the UAS, and transmits encoded data signals receivable and decodable by specially configured receiver devices in range. The encoded identifier signals may be transmitted at low power via radio-control frequencies, whitespace frequencies, ISM frequencies, DME frequencies, or ADS-B frequencies as needed. The receiver devices may decode identifier signals to display the relative positions of, and information about, nearby UAS even in internet-denied areas (standalone mode). The receiver devices may retrieve additional data, such as operator information and flight plans, from remote databases by establishing wireless connections when said connections are available (connected mode).
US10733867B2
A management system includes, a sensor configured to detect biological information on a user, a communication unit capable of communicating with a terminal device and capable of receiving the biological information, a controller configured to detect whether the user is awake or gets out of the bed, based on the received biological information and activate an alarm to the terminal device, and a display configured to prioritize the alarm related to the user which has a high possibility of falling off the bed.
US10733865B2
A data value and condition sensing and threat detecting network comprising a plurality of wireless sensor devices and their optional related wireless sub-sensor devices, for communication with wireless detector units in a network arrangement, such wireless detector units to communicate to and from a secure Central Monitoring Unit (“CMU”) that manages the value/condition sensing and client alert processes, based upon wireless sensor values/conditions and optional wireless sub-sensor values/conditions as they relate to pre-determined values/conditions, and sensor device location coordinates data (derived from Global Positioning Systems(“GPS”) or Cellular Triangulation Systems (“CTS”)) as they relate to pre-determined “location differential values”, data “timeframe-based rate of change” as it relates to pre-determined “rate of change differentials” in a pre-determined timeframe or part thereof, and declaring a normal, aware or alert state within a pre-determined timeframe, with the CMU enabling/disabling related devices and alerting responders, and confirming that such related devices have been enabled/disabled and alerts have been delivered, to responders.
US10733864B2
An information processing device is equipped with a recognition information acquirer, a danger determiner, a signal generator, and a signal transmitter. The recognition information acquirer acquires, from an electric apparatus, recognition information that is information obtained as a result of recognition of sensor information by the electric apparatus that performs operational control using the sensor information, the sensor information being sensed and output by a sensor. The danger determiner determines whether a danger state exists based on the recognition information acquired by the recognition information acquirer. The signal generator, when the danger determiner determines that the danger state exists, generates an informing signal that causes operation of an informing function of an informing apparatus that informs of danger. The signal transmitter transmits to the informing apparatus the informing signal generated by the signal generator.
US10733859B2
A method is provided. The method includes: establishing a database of a plurality of individuals, data for each individual including identity, short range wireless device information, and at least one rule regarding expected interaction by the individual relative to the area; receiving probe signal information from a plurality of sensors around an area, each of the sensors being configured to receive probe signals from proximate wireless devices, the probe signals lacking information directly identifying an owner of the originating wireless device; cross referencing at least some of the received probe signals with at least a portion of the database; identifying, based at least on the cross referencing, a presence of an unauthorized individual in the area; and notifying a supervising authority of the identified unauthorized individual.
US10733843B2
An electronic gaming system includes a progressive system server configured to establish a tiered plurality of progressive jackpots that includes a first jackpot increasable a first cap value, a second jackpot increasable to a second cap value greater than the first cap value, and at least one intermediate jackpot increasable to at least one intermediate cap value greater than the first cap value and less than the second cap value. The progressive system server is further configured to allocate portions of player wagers to one of i) the first jackpot, ii) the at least one intermediate jackpot, and iii) the second jackpot, whereby the first jackpot is initially incrementally increased to the first cap value, the at least one intermediate jackpot is next incrementally increased to the at least one intermediate cap value, and the second jackpot is next incrementally increased to the second cap value.
US10733841B2
A gaming system includes a controller linked to a plurality of gaming devices. The central server tracks: (i) a quantity of gaming devices being actively played by players, or (ii) a quantity of players actively playing at the gaming devices. The controller determines the players' eligibility for different awards based on the tracked quantity. When the controller tracks a first quantity, the controller provides the active players with an opportunity to win a first award. When the central server tracks a second quantity, the central server provides the active players with an opportunity to win a second award. As the tracked quantity changes, the controller determines or modifies the number of awards available to the players actively playing at the gaming devices.
US10733832B2
A gaming machine having a display to display symbols at a plurality of display positions and a plurality of prize identifiers. The gaming machine also includes a game controller to cause a display to display a plurality of symbols at the display positions and visually moves a number of a plurality of prize identifiers at a first speed. If a trigger condition occurs with the displayed symbols, the game controller selects a prize identifier of the prize identifiers to be upgraded while visually moving the selected prize identifier being upgraded at a second speed onto the display. The game controller completes the upgrading on the display while the selected prize identifier is being displayed.
US10733829B2
A system for delivering and/or picking up items comprising a container, which is closable via an openable/closable door and has access protection, and a standardized coupling mechanism for the option of fastening on a delivery vehicle, a mobile mini-vehicle or a stationary upright, wherein the coupling mechanism comprises a receiving means on the holder and comprises an engagement means, which is for engagement in the receiving means and is arranged on the delivery vehicle, on the mobile mini-vehicle and on the stationary upright such that the container is securable in a releasable manner optionally on the delivery vehicle, on the mobile mini-vehicle or on the stationary upright, and a corresponding method.
US10733814B1
A system, method, and computer-readable medium to facilitate treatment of a damaged vehicle by gathering crash information, estimating an extent of vehicle damage, and transmitting information associated with treating the damaged vehicle.
US10733811B2
The invention relates to a method for determining the position and shape of a control area on a road on which a vehicle is travelling, and to which a usage charge applies. According to the invention, a segment of the road is divided into segment sections and the perimeter of geographical coordinates of the control area associated with each segment section is calculated. At at least two different moments, a GNSS receiver calculates the position of the vehicle, said calculated positions being inside the control area; a control area being provided that is defined by a perimeter of geographical coordinates, fulfilling the requirements in terms of charging availability being above a pre-determined threshold value and the probability of a charging error being below a threshold value.
US10733800B2
A mixed reality (MR) simulation system includes a console and a head mounted device (HMD). The MR system captures stereoscopic images from a real-world environment using outward-facing stereoscopic cameras mounted to the HMD. The MR system preprocesses the stereoscopic images to maximize contrast and then extracts a set of features from those images, including edges or corners, among others. For each feature, the MR system generates one or more two-dimensional (2D) polylines. Then, the MR system triangulates between 2D polylines found in right side images and corresponding 2D polylines found in left side images to generate a set of 3D polylines. The MR system interpolates between 3D vertices included in the 3D polylines or extrapolates additional 3D vertices, thereby generating a geometric reconstruction of the real-world environment. The MR system may map textures derived from the real-world environment onto the geometric representation faster than the geometric reconstruction is updated.
US10733793B2
Embodiments of the disclosed technology use an indexed value blending approach to compute blended values between two fixed values from a palette of base values. In one example, the disclosed technology uses a parameterized array that defines the available colors of a color palette and also orders those values so that any two values that are to be blended are located adjacent to (consecutively with) one another within the array. The array can be efficiently used to compute the necessary input values for a linear interpolation that then computes the desired blended value. For instance, the array can be used to identify a first color value and a second color value to be blended in an interpolation process as well as the degree of blending between the two (e.g., a blending control value (or alpha value)).
US10733786B2
As user device can receive and display 360 panoramic content in a 360 depth format. 360 depth content can comprise 360 panoramic image data and corresponding depth information. To display 360 depth content, the user device can generate a 3D environment based on the 360 depth content and the current user viewpoint. A content display module on the user device can render 360 depth content using a standard 3D rendering pipeline modified to render 360 depth content. The content display module can use a vertex shader or fragment shader of the 3D rendering pipeline to interpret the depth information of the 360 depth content into the 3D environment as it is rendered.
US10733783B2
Described herein are motion smoothing techniques for a display system to account for motion of moving or animating objects in a way that mitigates judder. For example, first pixel data and second pixel data associated with two previously-rendered frames may be provided to a graphics processing unit (GPU) as input. The video encoder of the GPU can process the input pixel data to generate an array of motion vectors which is used to modify third pixel data of a re-projected frame. The modified third pixel data for the re-projected frame is “motion-smoothed” for rendering on a display, such as a head-mounted display (HMD), in a manner that mitigates judder of moving or animating objects.
US10733779B2
Representative embodiments disclose mechanisms for presenting content into a virtual reality or augmented reality (VR/AR) system in a manner that does not distract the user from their primary workflow in the VR/AR system. The system monitors a user's workflow in a virtual reality or augmented reality (VR/AR) system. Based on the user's workflow, the user's emotional state, and other data, the system selects one or more bots to inject into the user's workflow. The bots provide content and functional extensibility for the system and/or the VR/AR system. Content from the selected bot(s) is identified and placed in a location that is in the periphery of the user at a low rendering fidelity. If the user shows interest in the content, the fidelity of the content is increased until the user can interact with the content, using the functionality provided by the bot.
US10733778B2
Example embodiments described herein pertain to a geospatial interface system configured to cause display of geospatial data within a graphical user interface at a client device, receive data points from multiple data sources, unify the data points, and present the unified data points as interactive graphical elements within the graphical user interface, in a presentation layer separate from the geospatial data. In example embodiments, the geospatial interface system may be or include a group of one or more server machines configured to provide one or more geospatial data display, indexing, and management services. A client device may accordingly display a graphical user interface generated by the geospatial interface system.
US10733771B2
A method of reconstructing an image of a colon, including receiving scan data of a colon taken by an imaging capsule that traverses the colon; wherein the imaging capsule emits X-ray radiation inside the colon and includes detectors that detect photons that are returned toward the imaging capsule from X-ray fluorescence and Compton back scattering interactions responsive to the radiation; and wherein the scan data includes counts of photons detected by each detector from X-ray fluorescence and Compton back scattering interactions; defining an initial guess of a geometry of a contour of a slice of the colon; calculating count values for each detector responsive to the geometry using a forward model; comparing the calculated count values of each detector with the values from the scan data; if the results of the comparison do not indicate reaching an optimal match then adjust the defined geometry and repeat the calculating and comparing.
US10733764B2
A texture processing method and apparatus that obtains information about a first data loss amount that occurred during a texture compression process. A determination is made regarding a second data loss amount that allowable during a texture filtering process based on the obtained information regarding the first data loss amount. Texture filtering is then performed by using the second data loss amount. At least one processor determines the second data loss amount based on a difference between the third data loss amount and the first data loss amount.
US10733756B2
A computer-implemented method, system, and computer program product are provided for object detection utilizing an online flow guided memory network. The method includes receiving, by a processor, a plurality of videos, each of the plurality of videos including a plurality of frames. The method also includes generating, by the processor with a feature extraction network, a frame feature map for a current frame of the plurality of frames. The method additionally includes determining, by the processor, a memory feature map from the frame feature map and a previous memory feature map from a previous frame by warping the previous memory feature map. The method further includes predicting, by the processor with a task network, an object from the memory feature map. The method also includes controlling an operation of a processor-based machine to react in accordance with the object.
US10733752B2
A volume of contents in a container of a work vehicle can be estimated in various examples. One example involves a system with a 3D sensor on a work vehicle, where the 3D sensor captures images of the contents in a container of the work vehicle. The system also includes a sensor for detecting an angle of the container. A processor device that is in communication with the 3D sensor and the sensor determines a volume of the contents in the container using the images and the angle.
US10733747B2
An image registration apparatus includes an image acquisition unit that acquires a three-dimensional image obtained by imaging a subject and an image different from the three-dimensional image; a graph structure generation unit that generates a graph structure of a tubular structure included in the three-dimensional image; a contour information acquisition unit that acquires contour information of the tubular structure at each point on the graph structure; and a registration unit that performs registration between the three-dimensional image and the different image on the basis of the contour information.
US10733744B2
Methods and systems for aligning images for a specimen acquired with different modalities are provided. One method includes acquiring information for a specimen that includes at least first and second images for the specimen. The first image is acquired with a first modality different than a second modality used to acquire the second image. The method also includes inputting the information into a learning based model. The learning based model is included in one or more components executed by one or more computer systems. The learning based model is configured for transforming one or more of the at least first and second images to thereby render the at least the first and second images into a common space. In addition, the method includes aligning the at least the first and second images using results of the transforming. The method may also include generating an alignment metric using a classifier.
US10733741B2
According to some aspects, an information processing device is provided. The information processing device includes circuitry configured to set at least one region of an image of a biological sample and select a motion compensation parameter calculated based at least on a motion of the at least one region. The circuitry is further configured to control display of a result of performing a process on the at least one region using the selected motion compensation parameter.
US10733737B2
A method and system of automated segmentation of an anatomical object through learned examples include: receiving, by a processing device, an image of the anatomical object; determining a sparse representation of a shape of the anatomical object by iteratively evolving a segmenting surface as a combination of a level set segmentation and a linear combination of training shapes; and outputting, to an output device, the sparse representation of the shape of the anatomical object as the segmentation of the anatomical object.
US10733736B2
This Invention is directed at the automated analysis of body scanner images. Body scanners are used in airports and other secured facilities to detect weapons, explosives, and other security threats hidden under persons' clothing. These devices use x-rays, millimeter waves and other radiant energy to produce an electronic image of the person's body and any concealed objects. Examination of these images by human analysts is slow, expensive, and subject to privacy concerns. The Invention provides automated analysis of body scanner images by recognizing that human anatomy is bilaterally symmetric to a high degree, while concealed objects are asymmetric. Digital techniques are used to separate the scanned image into its symmetric and asymmetric parts, thereby effectively separating anatomic from non-anatomic image features.
US10733735B2
An ophthalmic apparatus that may include a processor; and a memory storing computer-readable instructions therein, the computer-readable instructions, when executed by the processor, causing the ophthalmic apparatus to perform: acquiring a two-dimensional tomographic image of the subjected eye; calculating a preoperative shape of the subjected eye based on a preoperative two-dimensional tomographic image of a preoperative subjected eye acquired by the acquiring of the two-dimensional tomographic image; calculating a postoperative shape of the subjected eye based on a postoperative two-dimensional tomographic image of a postoperative subjected eye acquired by the acquiring of the two-dimensional tomographic image; and calculating a displacement amount between a first reference axis obtained from the preoperative two-dimensional tomographic image of the preoperative subjected eye and a second reference axis obtained from the postoperative two-dimensional tomographic image of the postoperative subjected eye, based on the calculated preoperative shape and the calculated postoperative shape.
US10733726B2
Systems and methods for personalized cancer therapy using analysis of pathology slides to target regions in a single sample that interrogates the feature data of a relatively large number of cells. The disclosure describes pathology case review tools of the future which include analysis, visualization and prediction modeling to provide novel information to the pathologist for the diagnosis of disease. This disclosure further describes a user interface to assist the physicians that make that diagnosis, pathologists. Complex computer learning algorithms will combine and mine these data sets to recommend optimal treatment strategies. A computer interface is provided which allows a pathologist to access those data instantly to make a more informed and accurate diagnosis.
US10733722B2
Systems and methods for detecting and correcting defective products include capturing at least one image of a product with at least one image sensor to generate an original image of the product. An encoder encodes portions of an image extracted from the original image to generate feature space vectors. A decoder decodes the feature space vectors to reconstruct the portions of the image into reconstructed portions by predicting defect-free structural features in each of the portions according to hidden layers trained to predict defect-free products. Each of the reconstructed portions are merged into a reconstructed image of a defect-free representation of the product. The reconstructed image is communicated to a contrastor to detect anomalies indicating defects in the product.
US10733718B1
In general, a system is described that includes a set of one or more cameras and a computing device. The computing device receives a plurality of images of a three-dimensional environment captured by the one or more cameras, and a respective camera that captures a respective image is distinctly positioned at a respective particular location and in a respective particular direction. The computing device generates a plurality of image sets that each include at least three images. For each image set, the computing device calculates a plurality of predicted pairwise directions. The computing device compares a first sum of model pairwise directions with a second sum of the plurality of predicted pairwise directions and generates an inconsistency score for the respective image set. The computing device then reconstructs a digital representation of the three-dimensional environment depicted in the images.
US10733713B1
An apparatus includes a first circuit, a second circuit and a third circuit. The first circuit may be configured to set a flag where a current value in a current line of an image is a maximum value in a first window in the current line. The second circuit may be configured to reset the flag based on one or more previous lines of the image where the current value is not a largest value in a second window around the current value. The third circuit may be configured to generate an output value as (i) the current value if the flag is set and (ii) a predetermined value if the flag is reset.
US10733704B2
A method of increasing temporal resolution the method a) provides a current video having an initial spatial resolution and an initial temporal resolution, the current video has a temporally reduced video of an original video; b) repeatedly reduces the spatial resolution of the current video and the original video to produce a lowest spatial resolution current video and original video, the lowest spatial resolution current video having the initial temporal resolution; c) increases the temporal resolution of the lowest spatial resolution current video; d) increases the temporal resolution of the next higher spatial resolution current video; and e) repeats step (d) up to the initial spatial resolution. Steps c) and d) further include calculating enhancement data and using the enhancement data to enhance the increased temporal resolution of the current video, the calculating including using the respective reduced spatial resolution original video.
US10733694B2
A semiconductor device includes; a first memory that stores first and second layer image data portions used to generate first and second frame images on a display device, a second memory that stores a change map, a display controller that generates positional information associated with an image data portion in response to the change map, and an interface that receives image data and positional information and generates a command for updating the image data.
US10733691B2
Graphics processing may include implementing a vertex shader and a pixel shader with the GPU. Vertex indices output from a vertex shader may be written to a cache. The vertex indices written to the cache may be accessed with the pixel shader and vertex parameter values associated with the vertex indices may be accessed from a memory unit with the pixel shader. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
US10733678B2
Systems, methods, and non-transitory computer-readable media can determine a plurality of candidate entities for recommendation to a user of a social networking system. A predicted activity objective value model configured to calculate activity stores for candidate entities is established. The activity score is indicative of the probability of future activity on the social networking system by a candidate entity. A first activity score is determined for each of the plurality of candidate entities based on the predicted activity object value model and a first set of feature values. A second activity score is determined for each of the plurality of candidate entities based on the predicted activity object value model and a second set of feature values that is different from the first set of feature values. A first entity is selected of the plurality of candidate entities based on the first and second activity scores.
US10733666B1
Methods, systems, and articles of manufacture are provided for defining a privacy zone between an asset platform and an offering platform within a network. A request is received from a customer for an offering to be deployed in association with an asset hosted on the asset platform. The offering has back-end offering logic and front-end offering logic that is operatively configured to collect and transfer a data element associated with the asset to the back-end offering logic. A privacy policy associated with the offering is identified. The front-end offering logic is deployed to the asset platform such that the front-end offering logic is operatively configured to communicate with the asset. A data element collection filter is then generated between the front-end offering logic and the back-end offering logic to control the transfer and the access of the data element in accordance with the privacy policy.
US10733663B2
Aspects of the present disclosure disclose systems and methods for providing order entry platform that automatically enables telecommunication service providers to process customer orders for telecommunication products and/or services in near real-time. More particularly, one or more interactive interfaces, dynamically driven by a products catalog, may be generated that enable telecommunication service providers to automatically process orders received from customers for such products.
US10733662B2
In various exemplary embodiments, a system and method to provide gift media is disclosed. The method includes receiving, at an interactive media component, a selection of the media item and a selection of at least one recipient for the media item from a user of a client device. A purchase transaction based on the selection of the media item and the at least one recipient is processed. Delivery of the media item to the at least one recipient is triggered.
US10733660B2
A computer-implemented product palletizing system and a method of product palletizing which includes processor in communication with a memory element containing a computer code executable to coordinate the discrete activities of one or more pickers and conveyor product sorting assembly to allocate a plurality of products to a plurality of pallets.
US10733654B2
In one embodiment, a method includes receiving a plurality of candidate offers that are likely associated with a product being offered for sale. Each candidate offer is associated with a common set of attributes, wherein at least one of the attributes in the common set uniquely identifies the product being offered for sale. The method further includes, for each attribute value of each candidate offer, scoring the attribute value based on an aggregate number of times that the attribute value is found across corresponding attributes of other candidate offers in the plurality, and adding the scores for a first pair of attributes to determine a cumulative score for the candidate offer. One of the attributes in the first pair is the at least one attribute that uniquely identifies the product. The method still further includes updating a set of normalized attribute values for the product to include the attribute values for the first pair of attributes from a highest scoring candidate offer.
US10733647B2
The present invention is generally directed to a cumulative rating system for generating accurate and unbiased evaluations of products, performances, and/or services, thereby improving the reliability of information provided to a consumer and improving their purchasing decision.
US10733644B2
A user's location is determined by location information communicated by a user device, such as a smart phone. Merchants near the user location are determined and selected. Merchant payment information is transmitted to the user device so that the user can easily make a payment to the merchant through the user device. Merchant offerings may also be sent to the user device for purchase and subsequent payment, where the merchant offerings may be specifically selected for the user.
US10733643B2
A variety of systems, methods and arrangements are implemented in connection with a processor-controlled routing arrangement. According to one such implementation, a computer-implemented method facilitates payment provided between disparate payment networks of buyers and sellers. The method uses a computer-arrangement to interface with a social website that has user profiles, each user profile corresponding to a user identifier, and for use with a seller website that offers products or services for purchase by users and that generates transaction data for a current user accessing the website. A current user identifier corresponding to a current user profile and the transaction data is communicates to the computer-arrangement. A buyer payment network is selected from a plurality of disparate buyer payment networks that are each associated with the current user identifier. Based upon the selection, the transaction data is formatted to facilitate payment against the selected buyer payment network.
US10733633B2
Techniques for monitoring an online video advertisement system include receiving a request for insertion of an online video advertisement, determining, selectively based on presence of a debug suffix, whether the request includes a debug request, performing a bidding auction to select a winning bid, and sending debug information, in response to the request, upon determination that the request includes the debug request. The debug data includes bid data received during the bidding auction. In one advantageous aspect, the use of hypertext transfer protocol headers to communicate debug information allows for activation and deactivation of the debugging operation transparently, e.g., without changing the underlying application layer workflow.
US10733632B2
A system is disclosed comprising: a memory and at least one processor operatively coupled to the memory, the at least one processor being configured to: present a user interface for registering an advertiser with the system and specifying an attribution rule for calculating a fee that is owed by the advertiser to a first advertising platform; obtain an analytics report; generate an attribution report based on the analytics report and the attribution rule, the attribution report including an indication of a fee that is calculated based on the attribution rule; and transmit the attribution report to the first advertising platform.
US10733631B2
Techniques are disclosed utilizing cognitive computing to improve commercial communications from vendors to users. A user's financial account(s) and location may be monitored to determine when a user is within a threshold distance of a vendor. If the user is within the threshold distance the methods and systems disclosed may determine which targeted commercial communications to transmit to the user based upon a shopping profile for the user. The shopping profile may include a dataset indicative of the shopping habits of the user.
US10733622B1
System that enables a user to share a referral link to content obtained from the user interface of an application user is using. When recipient uses the link (for example by purchasing a product), user who shared the link may receive a commission. System may monitor an application user interface, by subscribing to events broadcast by the operating system when the user interface changes. For a web browser, the system may analyze events to extract the URL of the page being browsed, and compare this URL to a database of merchants or services that support referrals. When the URL matches a database entry, the system may present a sharing menu that allows the user to share a referral link via email, text, social media, or other sharing service. The user may also be able to use the referral link directly to receive a credit for his or her own purchase.
US10733617B2
Some embodiments may provide a method and a system for receiving, from a first user, a first evaluation indication with respect to a first publication, and in response to receiving the first evaluation indication, automatically initiating a secondary evaluation process comprising automatically selecting a set of publications including at least a second publication; presenting a first user interface affordance to elicit a selection indication indicating a publication from among the set of publications, receiving a selection indication indicating the second publication, and in response to receiving the selection indication, presenting a second user interface affordance to elicit a second evaluation indication with respect to the second publication.
US10733615B2
The present invention discloses a method and system for certifying and verifying gemstones and a document certifying and verifying gemstones. The method comprises the steps of capturing at least one image of an inclusion in a gemstone; storing the image in a first database; and displaying the image on a certification document for presenting to a consumer, wherein the image is of sufficient magnification to allow the consumer to compare the image on the document to the gemstone viewed through an optical device to determine if the gemstone matches the image.
US10733605B2
A method for processing a resource account transaction within a wireless electronic device, such as a smartphone or other portable electronic device. During or at the initiation of a resource transaction with a near-field transaction terminal, the device receives from the terminal via a first communication interface, a resource account system ID. A locally stored resource account is selectively identified based on the received resource account system ID. The device sends a resource account application ID corresponding to the selected resource account to the near-field transaction terminal via the first communication interface. From the near-field transaction terminal, the device receives a token ID that is associated with the selected resource account, and sends, the token ID to an account management system via a second communication interface. The device receives from the account management system a transaction token comprising the token ID associated with a specified transaction resource value.
US10733604B2
A system and method for using derived account identifiers. The derived account identifiers are associated with a single permanent account identifier. Each derived account identifier is associated with a communication channel or portable consumer device.
US10733601B1
Disclosed are examples of a method, a wearable device and a system enabling authentication of a user of a payment account or completion of a purchase transaction via signals generated by the wearable device. A process may include a wearable device generating a modulated signal using an encryption algorithm. The modulated signal may contain authentication information related to the wearable device including a cryptographic authentication message. The modulated signal is output to a biological medium interface of the wearable device that is coupled to a biological medium of a wearer of the wearable device. The biological medium is operable to conduct the modulated signal. A receiving device processes including decrypting and demodulating the modulated signal received from the biological medium. Using the demodulated signal, the authentication information transmitted from the wearable device is obtained. Based on the obtained authentication information, a transaction may be authorized, or a user authenticated.
US10733596B2
Systems, methods, and computer program products are provided for managing contactless transactions. A tap notification including at least a first identifier is received. A first counter in a first data set associated with the first identifier is incremented. It is determined if the first counter matches one of a plurality of thresholds. If it is determined that the first counter matches one of a plurality of thresholds, a first status level in the first data set is updated. A first set of benefits from a plurality of benefits stored in a memory based on the first status level is identified. The first set of benefits is associated with the first identifier.
US10733595B2
An appointment and payment handling system may operate to handle payments for appointments based on user locations at times associated with appointments. The appointment and payment handling system may determine if a location of a customer device associated with a customer associated with an appointment matches a location associated with the appointment. If the locations match, the appointment and payment handling system may create a payment record for a payment to the merchant from the customer based on the determination that the customer location matches the location associated with the appointment.
US10733574B2
Embodiments of the disclosure provide systems and methods for logging a meeting. The system may include a memory storing computer-executable instructions and a processor. The processor may be configured to execute the instructions to perform operations. The operations may include receiving audio of the meeting captured by at least one microphone device and determining an arriving angle of speech from at least one attendee of the meeting based on the captured audio. The operations may also include generating a data stream based at least in part on the arriving angle of speech, determining an identification of the at least one attendee, and matching the identification to the data stream.
US10733553B2
Creating a work item in a work item tracking system from action item data in a productivity application document is provided. A work item extraction system receives a selection to create a work item from a string of data in the document, parses the string for work item attributes, and maps the work item attributes to fields in a work item creation form in a work item tracking system for creation of a task item. Further, a link to the created work item is generated and inserted into the document, which provides direct access the work item in the work item tracking system. The work item extraction system communicates with the work item tracking system for a status of the work item, and updates the document to indicate the status of the work item.
US10733552B2
A demand tracking system in a retail environment including a retail store having a plurality of product displays is provided. The system includes at least one processor coupled to a memory storing information regarding a demand for each product of a plurality of products in the retail store, the demand for each product including a difference between a current quantity of each product on a respective product display and a maximum capacity of the respective product display, an interface configured to receive product sales information and user action information and to provide user action requests, and a demand tracking component. The demand tracking component is configured to adjust the demand for each of the plurality of products based on the product sales information and user action information.
US10733546B2
Tracking the process of a client activity via an electronic system involves the provision of user interfaces by which data are communicated to user. Optimizing the generation of these user interfaces in a cloud-based system reduces processing resources required by the cloud-based portion, improves the user experience on the local portions, and improves the data collected by users. Using, as described herein, historical data known to the cloud-based portion related to both the user and the client, the user interfaces are updated to show progress of the activity and to organize the tasks for the given user in an optimal arrangement. Reports may also be generated regarding the efficacy of the users in shepherding the activity to completion in a more efficient manner. Various user interface elements are integrated into the cloud-based system for quick provision of activity and task statuses to the user.
US10733535B1
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a model using parameter server shards. One of the methods includes receiving, at a parameter server shard configured to maintain values of a disjoint partition of the parameters of the model, a succession of respective requests for parameter values from each of a plurality of replicas of the model; in response to each request, downloading a current value of each requested parameter to the replica from which the request was received; receiving a succession of uploads, each upload including respective delta values for each of the parameters in the partition maintained by the shard; and updating values of the parameters in the partition maintained by the parameter server shard repeatedly based on the uploads of delta values to generate current parameter values.
US10733530B2
Testing machine learning sensors by adding obfuscated training data to test data, and performing real time model fit analysis on live network traffic to determine whether to retrain.
US10733522B2
In a general aspect, a quantum logic control sequence is generated for a quantum information processor. In some aspects, a quantum computation to be performed by a quantum information processor is identified. The quantum information processor includes data qubits and is configured to apply entangling quantum logic operations to respective pairs of the data qubits. A graph representing the quantum information processor is defined. The graph includes vertices and edges; the vertices represent the data qubits, and the edges represent the entangling quantum logic operations. A quantum logic control sequence is generated based on the graph. The quantum logic control sequence includes a sequence of quantum logic operations configured to perform the quantum computation when executed by the quantum information processor.
US10733516B2
Provided is an information processing apparatus, including a calculation section which calculates a proficiency level of a user for operations performed by the user for achieving a prescribed objective based on history information related to the operations and attribute information related to physical features of the user, and a generation section which generates advice for achieving the objective based on the proficiency level calculated by the calculation section.
US10733512B1
A method includes, during an epoch of a genetic algorithm, determining a fitness value for each of a plurality of autoencoders. The fitness value for an autoencoder indicates reconstruction error responsive to data representing a first operational state of one or more devices. The method includes selecting, based on the fitness values, a subset of autoencoders. The method also includes performing a genetic operation with respect to at least one autoencoder to generate a trainable autoencoder. The method includes training the trainable autoencoder to reduce a loss function value to generate a trained autoencoder. The loss function value is based on reconstruction error of the trainable autoencoder responsive to data representative of a second operational state of the device(s). The method includes adding the trained autoencoder to a population to be provided as input to a subsequent epoch of the genetic algorithm.
US10733506B1
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating object predictions using a neural network. One of the methods includes receiving respective projections of a plurality of channels of input sensor data, wherein each channel of input sensor data represents different respective characteristics of electromagnetic radiation reflected off of one or more objects. Each of the projections of the plurality of channels of input sensor data are provided to a neural network subsystem trained to receive projections of input sensor data as input and to provide an object prediction as an output. At the output of the neural network subsystem, an object prediction that predicts a region of space that is likely to be occupied by an object is received.
US10733500B2
In one embodiment, a system includes one or more electronic neurons and one or more electronic axons. Each neuron is connected to at least one electronic axon via an electronic synapse, and at least one of the one or more electronic neurons is configured to store information in a membrane potential thereof and/or at least one of the one or more electronic axons is configured to store information in an axon delay buffer thereof to act as a memory. In another embodiment, a computer-implemented method includes storing information to a memory comprising electronic neurons and electronic axons. Information is stored in either a membrane potential of at least one of the electronic neurons or in an axon delay buffer of at least one of the electronic axons. Also, each neuron is connected to at least one electronic axon via an electronic synapse.
US10733498B1
Methods and systems for supporting parametric function computations in hardware circuits are proposed. In one example, a system comprises a hardware mapping table, a control circuit, and arithmetic circuits. The control circuit is configured to: in a first mode of operation, forward a set of parameters of a non-parametric function associated with an input value from the hardware mapping table to the arithmetic circuits to compute a first approximation of the non-parametric function at the input value; and in a second mode of operation, based on information indicating whether the input value is in a first input range or in a second input range from the hardware mapping table, forward a first parameter or a second parameter of a parametric function to the arithmetic circuits to compute, respectively, a second approximation or a third approximation of the parametric function at the input value.
US10733488B2
To generate a dot pattern whose deterioration of a feeling of granularity, density unevenness, and streaks are unlikely to be recognized visually by more effectively suppressing a change of an overlap of ink droplets on a printing medium. Halftone image data representing a dot pattern of each of two or more kinds of dot different in density reproduction is acquired. Then, in a case where there is a possibility that the contact state between dots changes due to a landed-dot shift of ink in a plurality of specific dots on a condition that dots are formed in accordance with a dot pattern in the halftone image data, the plurality of specific dots is replaced with dots of another kind whose number is less than or equal to that of the plurality of specific dots.
US10733484B2
An approach is provided for dynamic adaptation of an in-vehicle feature detector. The approach involves embedding a feature detection model, precomputed weights for the feature detection model, or a combination thereof in a data layer of map data representing a geographic area from which a training data set was collected to generate the feature detection model, the precomputed weights, or a combination thereof. The approach also involves deploying the feature detection model, the precomputed weights, or a combination thereof to adapt an in-vehicle feature detector based on determining that the in-vehicle feature detector is in the geographic area, plans to travel in the geographic area, or a combination thereof. The in-vehicle feature detector can then use the feature detection model, the precomputed weights, or a combination thereof to process sensor data collected while in the geographic area to detect one or more features.
US10733483B2
A method includes: receiving training data comprising a plurality of training data items, each training data item labelled under a respective class and comprising a elements arranged in conformity with a structured representation having an associated coordinate system; determining patches of the training data, each patch comprising a subset of the elements of a respective training data item and being associated with a location within the co-ordinate system of the structured representation; and initialising a set of parameters for a Gaussian process. The method further includes iteratively: processing pairs of the determined patches, using a patch response kernel to determine patch response data; determining, using the patch response data, entries of a covariance matrix; and updating the set of parameters in dependence on the determined entries of the covariance matrix. The patch response kernel takes into account the locations associated with patches within the co-ordinate system of the structured representation.
US10733480B2
There is described a computing device and method in a digital medium environment for custom auto tagging of multiple objects. The computing device includes an object detection network and multiple image classification networks. An image is received at the object detection network and includes multiple visual objects. First feature maps are applied to the image at the object detection network and generate object regions associated with the visual objects. The object regions are assigned to the multiple image classification networks, and each image classification network is assigned to a particular object region. The second feature maps are applied to each object region at each image classification network, and each image classification network outputs one or more classes associated with a visual object corresponding to each object region.
US10733477B2
In the present disclosure, an image parameter of an input image is changed, features is extracted from each of a plurality of generated images, a category of each region is determined based on the features in each image, and the results are integrated.
US10733471B1
Some aspects of the invention relate to a mobile apparatus including an image sensor configured to convert an optical image into an electrical signal. The optical image includes an image of a vehicle license plate. The mobile apparatus includes a license plate detector configured to process the electrical signal to recover information from the vehicle license plate image. The mobile apparatus includes an interface configured to transmit the vehicle license plate information to a remote apparatus and receive recall information in response to the transmission.
US10733470B2
Systems and methods for aligning digital image datasets to a computer model of a structure. The system receives a plurality of reference images from an input image dataset and identifies common ground control points (“GCPs”) in the reference images. The system then calculates virtual three-dimensional (“3D”) coordinates of the measured GCPs. Next, the system calculates and projects two-dimensional (“2D”) image coordinates of the virtual 3D coordinates into all of the images. Finally, using the projected 2D image coordinates, the system performs spatial resection of all of the images in order to rapidly align all of the images.
US10733464B2
A method for obtaining 3D information of objects shown in at least two images obtained by at least two on-vehicle sensors, a device for carrying out the respective steps of the method, a system including such a device, and a vehicle including such a device or such a system are described.
US10733459B2
An image processing device includes: a generating unit that generates, based on a distance image, two-dimensional distribution information indicating a two-dimensional distribution of an object, in which a distance in a horizontal direction, a distance in a depth direction, and a frequency value corresponding to the distances are related; and a labeling unit that conducts a labeling process by conducting search on the two-dimensional distribution information multiple times, detecting a pixel having the frequency value that is more than a predetermined threshold during each search, and assigning a label that is different in each times of search, wherein the labeling unit conducts a first labeling process by selecting a pixel having the frequency value that is more than the threshold from pixels that abut a pixel being searched in a search direction and assigning the label when the label is not assigned to the pixel selected.
US10733441B2
A three dimensional bounding box is determined from a two dimensional image. A two dimensional bounding box is calculated based on a detected object within the image. A three dimensional bounding box is parameterized as having a yaw angle, dimensions, and a position. The yaw angle is defined as the angle between a ray passing through a center of the two dimensional bounding box and an orientation of the three dimensional bounding box. The yaw angle and dimensions are determined by passing the portion of the image within the two dimensional bounding box through a trained convolutional neural network. The three dimensional bounding box is then positioned such that the projection of the three dimensional bounding box into the image aligns with the two dimensional bounding box previously detected. Characteristics of the three dimensional bounding box are then communicated to an autonomous system for collision and obstacle avoidance.
US10733434B2
A computer-implemented method, system and a computer program product are provided for automatically detecting redaction blocks in an image file document by analyzing the document to identify any redaction block areas and then detecting location information for each redaction block area identified in the document which may be mapped to any associated text fragments in the document based on the location information for each redaction block area and text fragment in the document.
US10733433B2
This disclosure relates generally to document processing, and more particularly to method and system for detecting and extracting tabular data from a document. In one embodiment, the method may include generating a hierarchy of features, for a plurality of features of an image document derived from the document, based on relative spatial properties of the plurality of features. The method may further include segmenting the image document into a plurality of semantic segments based on the hierarchy of features, classifying each of the plurality of semantic segments into at least one of a plurality of tabular structures, and effecting at least one of a detection or an extraction of the tabular data from the image document based on the classification.
US10733430B2
A cat toilet, etc., which specifies precisely one cat who entered a toilet for cat is provided. The present invention relates to a camera for capturing a plurality of images of a cat entering a cat toilet, a cat identifying process for identifying identifiers of one cat appearing in a plurality of images based on a plurality of images captured by the camera section, the cat identification processing section extracts each feature amount from a plurality of images, determines the identifier of one cat as the identification result for each image based on the feature amount, and makes a majority decision of the identification result based on this, identifiers of one cat appearing in a plurality of images are specified.
US10733424B2
Disclosed is a face verification method and apparatus. The method including analyzing a current frame of a verification image, determining a current frame state score of the verification image indicating whether the current frame is in a state predetermined as being appropriate for verification, determining whether the current frame state score satisfies a predetermined validity condition, and selectively, based on a result of the determining of whether the current frame state score satisfies the predetermined validity condition, extracting a feature from the current frame and performing verification by comparing a determined similarity between the extracted feature and a registered feature to a set verification threshold.
US10733423B2
An image processing apparatus includes an object detection unit configured to detect objects from a plurality of images captured at different times, based on a degree of matching with a predetermined criterion, a determination unit configured to determine whether the objects detected by the object detection unit include an object that is the same object as an object detected within an image captured at another time, and an attribute detection unit configured to perform processing for extracting one or more object images, based on the degree of matching, from a plurality of object images corresponding to the object determined to be the same object by the determination unit, and detecting an attribute of the same object with respect to the extracted one or more object images.
US10733421B2
Embodiments of the present disclosure provide a method and a device for processing a video, an electronic device and a storage medium. The method includes: performing target recognition on each frame in an input video to obtain M frames containing a first face image, in which M is an integer greater than 1; replacing the first face image in the M frames with a target face image to obtain M first output frames; performing feature point locating on the first face image in a first frame in the M frames to obtain a first feature point set; extracting a target feature point set corresponding to a target region from the first feature point set; and performing image synthesis according to the target feature point set and the M first output frames to obtain M second output frames.
US10733420B2
Systems and method are provided for identifying free space between objects. The method includes retrieving, by a processor, a voxel grid around the vehicle wherein the voxel grid has a plurality of columns. The method further includes tracing, by the processor, lidar beams from a lidar system on the vehicle through the voxel grid, identifying, by the processor, a max subarray for each column in the voxel grid, classifying, by the processor, each column with a free space level, and outputting, by the processor, the classified columns as an image.
US10733406B2
By tracking a user's eyes, an indicia scanning system can make educated guesses as to what the user is interested in. This insight could be useful in dynamically configuring a camera system, configuring an indicia decoding process or even as a method to select data that the user is interested in.
US10733405B2
A three-dimensional image (3D) image for a shape of an orientation of an item is captured when an item barcode for the item is captured by a scanner during item checkout at a terminal. Edges for the shape and dimensions for the shape are calculated from the 3D image based on the orientation. The shape dimensions are compared against expected dimensions for a candidate item that is identified from item information in the item barcode and a decision is made as to whether to validate the item barcode for the item during item checkout or as to whether to invalidate the item barcode and suspend item checkout at the terminal for an audit of the item checkout.
US10733400B2
Ride-share status information of an autonomous ride-share vehicle is made available to potential passengers by transmitting a status data record an HMI device outside the vehicle. The data record (D′) is projected onto a projection area selected outside the vehicle using a projection device (8) of the motor vehicle. The projected data record (D′) is read-in using a reading device (10), such as a camera, of the HMI device. The HMI device decodes the read-in data record (D′), and provides the status information to a potential passenger on the HMI device (4) based on the decoded data record (D′).
US10733398B2
A detection device includes a switch unit, the switch unit performs switching to a gain reduction state in which a gain of a loop antenna is reduced or a gain non-reduction state in which the gain of the loop antenna is not reduced in correspondence with a state of a detection target. When a wavelength of an electric wave is set as λ, the switch unit includes switch terminals for reducing the gain of the loop antenna within a range K1 on the loop antenna from a first circuit terminal to a position that is spaced away from the first circuit terminal by λ/8. In addition, the switch unit includes switch terminals for reducing the gain of the loop antenna within a range on the loop antenna from a second circuit terminal to a position that is spaced away from the second circuit terminal by λ/8.
US10733391B1
A switched-capacitor integrator is described having the contribution to offset from the charge injection mismatch of switches connected to the summing nodes mitigated by using a switching scheme that conveys basically all the charge injection to the output, thus preventing net offset from being integrated.
US10733378B2
Systems and methods for dynamically assessing and displaying quality features of electronic messages, while composed on client devices, can include one or more processors monitoring the process of composing the electronic message. The one or more processors can retrieve, upon detecting a pause event, data associated with the composed electronic message from a message composing container, and determine a plurality of feature values for a plurality of features of the electronic message based on the retrieved data. The one or more processors can determine, based on the plurality of feature values, a likelihood of receiving a response from a receiving entity once the electronic message is sent to that receiving entity. The one or more processors can provide an indication of the determined likelihood of receiving a response and indications of the plurality of determined feature values for display in association with a message composing window displaying the text received.
US10733377B2
A method includes receiving an indication in an information handling device of an autocorrected word in a string of text, and providing an indication proximate the autocorrected word to a display.
US10733360B2
Systems and methods simulate a hyperlink in regular content displayed on a screen. An example method can include generating, responsive to detecting a simulated hyperlink indication, a centered selection from content displayed on a display of a computing device, providing the centered selection to a simulated hyperlink model that predicts an operation given the centered selection, and initiating the operation using an intent associated with a mobile application. The simulated hyperlink model may also provide, from the centered selection, an intelligent selection used the intent's parameter. Another method includes identifying documents having a hyperlink whitelisted websites, generating positive training examples for a simulated hyperlink model using the documents, each positive training example having a centered selection, a web site, and a mobile application mapped to the website, and training the simulated hyperlink model, using the positive training examples, to predict an operation for the mobile application given the centered selection.
US10733354B2
Disclosed are embodiments of a system, method and computer program product for wafer-level design including chip and frame design. The embodiments employ three-dimensional (3D) emulation to preliminarily verify in-kerf optical macros included in a frame design layout. Specifically, 3D images of a given in-kerf optical macro at different process steps are generated by a 3D emulator and a determination is made as to whether or not that macro will be formed as predicted. If not, the plan for the macro is altered using an iterative design process. Once the in-kerf optical macros within the frame design layout have been preliminarily verified, wafer-level design layout verification, including chip and frame design layout verification, is performed. Once the wafer-level design layout has been verified, wafer-level design layout validation, including chip and frame design layout validation, is performed. Optionally, an emulation library can store results of 3D emulation processes for future use.
US10733346B1
The present disclosure relates to a system for performing static timing analysis in an electronic design. Embodiments may include receiving, using at least one processor, an electronic design at a debugging platform without performing a model extraction phase and mapping one or more extracted timing models (“ETM”) to one or more netlist objects associated with the electronic design. Embodiments may further include receiving, at the debugging platform, at least one timing arc specified by a source pin and a sink pin, wherein the at least one timing arc is associated with the electronic design. Embodiments may also include generating a worst timing path based upon, at least in part, the received at least one timing arc. Embodiments may further include generating characterization information for the at least one timing arc based upon, at least in part, one or more user-specified boundary conditions.
US10733339B2
A vehicle body composite coating, comprising, in succession, a polyurethane finishing coat, a polyurethane intermediate layer, a polyester putty and a micro-arc oxidation ceramic layer undercoat, wherein the micro-arc oxidation ceramic layer undercoat is on an aluminium substrate of the vehicle body. The design method of the vehicle body composite coating includes establishment of a physical model, selection of an optimal thickness ratio, preparation of the vehicle body composite coating and an erosion test. The vehicle body composite coating enhances the binding force between the whole coating system and the aluminium alloy substrate, reduces the possibility of shedding of the coating as a whole, and improves the anti-erosion performance of the vehicle body composite coating.
US10733333B2
Devices, methods, systems, and computer-readable media for building data consolidation are described herein. One or more embodiments include a method for building data consolidation, comprising: receiving a plurality of representative drawings that comprise a portion of a building, determining a boundary and a location of each of the plurality of representative drawings, wherein the boundary and the location correspond to the building, and stitching the plurality of representative drawings into a combined representative drawing of the building based on the boundary and the location.
US10733324B2
Technical solutions are described for preventing unauthorized transmission of data by a communication apparatus. An example computer-implemented method includes monitoring a data transmission request from an application being executed by the communication apparatus. The data transmission request is associated with transmission data. The method further includes securing the transmission data, where the securing includes identifying a content of a predetermined type in the transmission data, and generating secured transmission data. The secured transmission data includes a corresponding modified version of the content of the predetermined type. The computer-implemented method also includes transmitting the secured transmission data in response to the data transmission request.
US10733322B2
Examples of multi-persona account management in client devices are described. In one example, a client device can host a personal workspace, such as for personal data and applications of a user of the client device, along with a separate alternate persona workspace for work-related data and applications of the user. The client device interfaces with a management computing environment to enroll in device management services and establish an alternate persona workspace on the client device. The client device receives a token for the alternate persona workspace from the management computing environment, creates the alternate persona workspace, and installs an interface service in the alternate persona workspace. The client device also associates an alternate persona account with the alternate persona workspace using the token and returns a service identifier to the management computing environment. The management computing environment remotely administers applications installed in the alternate persona workspace using the service identifier.
US10733321B2
Aspects of the invention include processing queries in a database system having a first database engine and a second database engine. A first instance of a first table is stored in the first database engine in plaintext. At one predefined column of the first table is encrypted, resulting in a set of encrypted columns, using a cascade encryption scheme that includes a set of ordered encryption methods. A subset of the set of columns is stored in a second instance of the first table in the second database engine. An encryption method of the cascade encryption scheme that allows a query operation of a received query on data encrypted with the identified encryption method is identified. The identified encryption method is used to rewrite the query, and the rewritten query is executed using the second instance of the first table.
US10733319B2
A non-transitory computer-readable storage medium storing a program to execute a process including acquiring a first data file including a plurality of first records each having a first data value of a first data item and a second data value of a second data item, generating first association information indicating a correspondence between a plurality of first data values and coded data values, encoding the first data file, encrypting the first association information, obtaining a plurality of data values of the second data item in a second data file, specifying the plurality of first data values, in the plurality of first records, corresponding to the plurality of data values in the second data files, specifying a plurality of coded data values, in the encoded first data file, corresponding to the plurality of specified first data values, and merging the second data file and the plurality of specified coded data values.
US10733308B2
Unlocking digital content embodied in digital readable form on a digital media carrier is described. Unlocking the digital content includes evaluating a code provided by a user scanning a tag attached to a printed, physical copy of the digital content; and if the code corresponds to an authorized code, unlocking the digital content.
US10733305B2
A method for performing cryptography operations on data blocks within a volume of data is disclosed. The method involves generating a volume master key, generating a user key, generating a volume initialization vector, generating an intermediate key, generating a user volume key, and performing cryptography operations on data blocks within an individual volume of data using the volume master key, the user key, the volume initialization vector, the intermediate key, and the user volume key.
US10733304B2
A user device may strengthen the protection level of a digital content by dividing the security and normal modes and performing an operation. In order to further strengthen the protection level of the digital content, the user device may determine whether the main operating system is hacked or not, and blocks the operation in the secure mode. Otherwise, the device authorization information indicating the device security level of the user device is authorized by the content service server, and the user device blocks the operation in the secure mode according to the result.
US10733300B2
A Basic Input/Output System (BIOS)/Unified Extensible Firmware Interface (UEFI) on a Self-Service Terminal (SST) processes during a boot of the SST. When a new hard disk is detected as being present and an identifier for the new hard disk is missing from a whitelist, a signed hard disk identifier is verified from storage on the new hard disk. If the signed hard disk identifier is verified: the new hard disk is authenticated, the whitelist is updated to include the new hard disk identifier, a unique identifier for BIOS/UEFI and the new hard disk identifier are written to the storage of the new hard disk, and the boot process is permitted to continue for the SST.
US10733297B2
A device may generate versions of a first executable process that is associated with deterministically defined parameters. The device may run the versions of the first executable process, and may monitor device parameters of the device or the first executable process when running the versions of the first executable process. The device may determine, based on monitoring the device parameters of the device or the first executable process, a variance to a parameter of the deterministically defined parameters relative to an expected value for the parameter, and may provide information indicating a presence of malware in connection with the device based on determining the variance to the parameter.
US10733295B2
A malware detection system to detect malware in a virtual machine (VM), the system including a profile generator adapted to generate a profile of a deployment of the VM, the profile including execution characteristics of the deployment; a VM package generator to generate a VM package including: a VM descriptor describing a particular deployment of the VM; and an image of the particular deployment, the image including a representation of data stored for the particular deployment of the VM; and a malware identifier adapted to identify malware in a deployment of the VM responsive to the identification of a difference between profiles of multiple different deployments of the VM.
US10733294B2
Systems and methods may be used to classify incoming testing data, such as binaries, function calls, an application package, or the like, to determine whether the testing data is contaminated using an adversarial attack or benign while training a machine learning system to detect malware. A method may include using a sparse coding technique or a semi-supervised learning technique to classify the testing data. Training data may be used to represent the testing data using the sparse coding technique or to train the supervised portion of the semi-supervised learning technique.
US10733293B2
Systems, computer program products, and methods are described herein for cross platform user event record aggregation system. The present invention is configured to receive one or more exposure events from one or more detection systems; determine that a combination of at least a portion of the one or more exposure events indicates an intrusion in at least one of the one or more detection systems, thereby requiring elevated review of each exposure event; initiate the elevated review based on at least the indication of the intrusion; determine whether the intrusion is benign or harmful; and re-train the machine learning algorithm based on at least determining whether the intrusion is benign or harmful, thereby adjusting the score for future incidents of each exposure event in the combination of at least a portion of the one or more exposure events.
US10733290B2
Methods and equipment for determining whether a ransomware attack is suspected include a data storage device including a controller; non-volatile memory; a data path between the controller and the non-volatile memory; and an anti-ransomware module configured to monitor the data path. Methods and equipment also include monitoring a data path between a controller and a non-volatile memory on a data storage device; calculating an entropy of a data set to be written to the non-volatile memory; analyzing the calculated entropy; and determining whether a malware attack is suspected. Methods and equipment also include monitoring a data path between a controller and a non-volatile memory on a data storage device; identifying activity indicative of ransomware; once activity indicative of ransomware has been identified, calculating an entropy of a data set to be written to the non-volatile memory; analyzing the calculation; and determining whether a ransomware attack is suspected.
US10733284B2
A method and apparatus are provided for secure communication. The method includes binding an isolated environment, of a device, to a secure component. The secure component includes a secure application and data. The method also includes utilizing the isolated environment as an intermediary for communication of the data between the secure application and the device.
US10733277B2
The present application relates to systems and methods using biometric data of an individual for identifying the individual and/or verifying the identity of an individual. These systems and methods are useful for, amongst many applications, more secure identification of high-risk individuals attempting to gain access to an entity, transport, information, location, security organization, law enforcement organization, transaction, services, authorized status, and/or funds.
US10733276B2
The reliable differentiation of human and artificial talkers is important for many automatic speaker verification applications, such as in developing anti-spoofing countermeasures against replay attacks for voice biometric authentication. A multi-microphone approach may exploit small movements of human talkers to differentiate between a human talker and an artificial talker. One method of determining the presence or absence of talker movement includes monitoring the variation of the inter-mic frequency-dependent phase profile of the received microphone array data over a period of time. Using spatial information with spectral-based techniques for determining whether an audio source is a human or artificial talker may reduce the likelihood of success of spoofing attacks against a voice biometric authentication system. The anti-spoofing countermeasure may be used in electronic devices including smart home devices, cellular phones, tablets, and personal computers.
US10733274B2
There is provided a biometric authentication method using a portable electronic device. The method includes identifying a gesture of a user to be authenticated through a gesture recognition unit of the portable electronic device and acquiring biometric information of the user through an information input unit of the portable electronic device. The method further includes comparing the identified gesture and the acquired biometric information with an authentication information stored in an information storage unit to perform the biometric authentication of the user, and outputting a result of the biometric authentication.
US10733270B2
An aspect of the present invention is drawn to a patch for use with application against the skin of a user. The patch includes a substrate, a material detector, a memory, a comparator, an output component, and a power source. The material detector is disposed on the substrate and has a contact portion disposed so as to contact the skin. The material detector generates a material signal based on the amount of material contacting the contact portion. The memory has a priori material data stored within. The comparator outputs a compared signal based on the comparison of the material signal and the a priori material data. The output component outputs a readiness signal based on the compared signal and the a priori data. The power source provides power to the output component.
US10733263B2
Quantum computing is a computational paradigm for solving (exactly or approximately) difficult combinatorial optimization problems. One degree of freedom that is available is the so-called annealing schedule, which defines how the quantum computation evolves from the start of the computation to the end of the computation. This schedule is defined by anneal offsets, which can be different for each quantum bit (qubit) in the quantum computer. The choice of annealing schedule can have a dramatic impact on the performance of the computer. In this disclosure we provide a method for selecting and/or modifying the annealing schedule based on the problem to be solved.
US10733261B1
In one aspect, the present disclosure relates to a method for reducing fraud in computer networks, the method including receiving, from each of a plurality of user devices, a request to block an ad displayed within a web browser installed on the user device, the request comprising image data and a forwarding URL associated with the ad; storing crowdsourced ad blocking data based on the received requests to block ads; receiving a request for a list of blocked ads; generating a list of blocked ads based on analyzing the crowdsourced ad blocking data, wherein analyzing the crowdsourced ad blocking data comprises identifying ads blocked by at least a threshold number of users; and sending the list of blocked ads to a first user device, the first user device comprising a browser extension configured to prevent ads within the list of blocked ads from being rendered in a browser.
US10733260B1
Web pages compatible with different web browsers are seamlessly rendered within the same tab of a single web browser window. A first browser is executed in a computing device, and has an open browser window. A request is received at the first browser to navigate to a first page. The first page is determined to be incompatible with the first browser and compatible with a second browser. Under control by the first browser, an instance of the second browser is invoked without a browser window opening for the instance of the second browser. An address of the first page is provided to the instance of the second browser. The instance of the second browser renders the first page within a tab in the open browser window of the first browser.
US10733259B2
This application discloses a web page access method and apparatus. The web page access method includes: obtaining a web page access request, the web page access request carrying a web page address; determining whether a preset address sample set has an address sample matching the web page address; according to a determining result, loading a web page corresponding to the web page address by using a browser kernel; obtaining a web page element of the web page; determining whether a preset element sample set has a web page element sample matching the web page element; and when the preset element sample set has a web page element sample matching the web page element, determining whether browser kernel switching needs to be performed.
US10733257B2
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing a blockchain-based web service. One of the methods includes receiving an access request based on a short link. The short link of the access request is processed to obtain a long link corresponding to the short link. It is determined that the long link satisfies a predefined long link regular expression that is sent by a configuration server. The access request to the long link is redirected after determining that the long link satisfies the predefined long link regular expression.
US10733253B2
Embodiments for providing residence recommendations by one or more processors are described. At least one interest associated with a user is determined. At least one interest location associated with the at least one interest is identified. A score for each of a plurality of potential residences for the user is calculated at least based on a distance between the respective potential residence and each of the at least one interest locations. A signal representative of the calculated score for each of the plurality of potential residences is generated.
US10733252B2
In one technique, one or more search criteria associated with a first user are determined. Based on the one or more search criteria, a search of a first set of users is performed. As a result of the search, a subset of the first set of users is identified. A second set of users that have responded to messages from users in the subset is identified. Instances of attribute values of an attribute of the second set of users are aggregated to generate aggregated values, each of which corresponds to a different attribute value of the attribute values. Based on one or more of the aggregated values, content that is related to one or more attribute values that correspond to the one or more aggregated values is determined and presented to the first user.
US10733249B1
A system and method for context selection for social networking. An implementation of the platform is a mobile application.
US10733240B1
A method may include extracting first entities from a first portion of an unstructured data source associated with a user, obtaining, based on the first entities, a contract model including elements and a contract type, generating, by applying the contract model to the first entities, a proposed contract including a contract score and, for each element, element values. Each element value may include an element value score. The method may further include identifying a structured data source associated with the user, obtaining, from the structured data source, structured data corresponding to the first entities, correlating the structured data with an element value of the proposed contract, and modifying, by applying the contract model to the structured data, the element value score of the element value.
US10733238B2
A customer of a shared resource environment can generate script to be executed by one or more virtual machines, or other such instances or resources, and share that script with other users. The script can relate to administrative or other such tasks, and can be encapsulated into a document, or other such expression, and stored to a network-accessible location. The owner of the document can designate permissions as to which users have rights to access and/or execute the script against their own virtual machines. An owner can grant permission to all users, no other users, or specific users. The script can include parameter values that can be set by the other users or links to specific executables or other objects, among other such options.
US10733232B2
A memory system includes a memory device configured to store data, and a memory controller configured to perform communication between a host and the memory device and to control the memory device such that, during an operation of programming sequential data, a hash value is generated from logical block addresses of a memory area, to which the sequential data is to be written, and the hash value is stored and such that, during an operation of reading the sequential data, the sequential data is read from the memory area based on the hash value.
US10733222B1
Techniques for disambiguating which profile, of multiple profiles, is to be used to respond to a user input are described. A device located in a communal space (e.g., a hotel room or suite of rooms, conference room, hospital room, etc.) may be associated with a device profile and a user profile of a user presently occupying the communal space. When the user inputs a command to the device (either by text or speech), a system associated with the device determines the profiles (e.g., a device profile and a user profile) associated with the device. The system determines one or more policies associated with the device. The one or more policies may correspond to rules for disambiguating which profile to use to execute with respect to the user input. Using the one or more policies, the system determines which profile is to be used, and causes a speechlet component to execute using information specific to the determined profile.
US10733219B2
A portable electronic device is disclosed comprising: data processing means; data repository containing data records representative of locations relevant to or within a digital map; and display means. The device further comprises means for monitoring a free text search string as it is input by a user of the device; querying the data repository for matching records and generating suggestions selectable by a user to adjust the search, based on the search string as it is input; displaying at least some of any matching records and suggestions on the display; and, in response to receipt of user input indicating a selection of a matching suggestion, adjusting the search accordingly.
US10733214B2
A method includes generating, by a processor system, a graph. The graph is based at least in part on a plurality of instances in which operational taxonomic units are identified as being represented within an environment. The method can also include determining, using the processor system, that at least one instance of the plurality of instances corresponds to a false-positive identification of an operational taxonomic unit. The determining is based on the properties of the graph. The method can also include reporting the determination.
US10733213B2
Systems and methods are disclosed for structuring unstructured machine-generated content. In one implementation, unstructured content is received and processed to identify a first content segment. Parameter(s) within the first content segment are identified and classified. A content segment skeleton that reflects an arrangement of the first content segment is generated. Based on the classifying of the parameter(s), the parameter(s) are extracted s from the first content segment into a structured content element in a structured content format, with the structured content element including a representation of the content segment skeleton. Based on the structured format, a query adapter is generated. Queries are executed via the query adapter and the structured format.
US10733198B1
A data preprocessing system builds transformation scripts for preprocessing datasets for processing by a data analysis system. The data preprocessing system presents various representations of data of a dataset including visual representations, textual representations, or structural representations. The data preprocessing system receives selections of attributes or values based on these representations. The data preprocessing system generates recommendations of transformations based on the attributes or values selected. The data preprocessing system builds a transformation script based on the recommendations of the transformations. The transformation script can be used for preprocessing the dataset for analysis by a data analysis system.
US10733196B2
A system, method and computer-readable medium for modeling relationships between query responses in a data set including receiving a selection of one or more first queries and one or more second queries, receiving a selection of one or more first strings and one or more second strings, determining one or more representative values corresponding to one or more intersections, each intersection corresponding to a unique combination of a first query, at least one second query, a first string, and at least one second string, and generating a three-dimensional representation including one or more indicators corresponding to the one or more intersections, a visual attribute of each indicator in the one or more indicators reflecting a representative value corresponding to that intersection and the one or more indicators being organized within the three-dimensional representation along three axes.
US10733192B1
A method may include obtaining, from a user, an initial expression including an operator and an input extracted from a data source. The operator may be applied to the input. The method may further include obtaining, using a contextual mapping data structure, a contextualized expression including the input and the data source. The contextual mapping data structure may include a context corresponding to the user. The method may further include generating a result by evaluating the contextualized expression, obtaining, using a rule table, a validation rule corresponding to the contextualized expression, and triggering an alert in response to applying the validation rule to the result.
US10733183B2
The software system processes extracts reliable, significant and relevant patterns. System runs through preprocessing steps. System then generates the size 1 patterns. It then checks for both reliability and refinability of the size 1 patterns. System grows the refinable patterns by increasing the attributes and its values in the pattern by one at a time to find a size 2 pattern. The system then uses the number of pattern occurrences of size 2 pattern as a basis to find the reliable patterns. System also checks for statistical significance over the size 1 patterns and once again for the refinability of the size 2 patterns. System checks for relevance of the size 1 patterns by obtaining the disjointed record complement set. Software system readjusts the pattern statistics of size 1 and removes the non-relevant super-patterns. This process is repeated from size 2 to N.
US10733178B2
Provided are embodiments of electronic document processing that include a workflow engine executing a workflow that includes verifying material data of an electronic document, providing a verified copy of the electronic document to a reviewer for review and, in response to receiving approval of the electronic document from the reviewer, obtaining a digital signature of material data of the electronic document from the reviewer. The workflow may include a similar process for multiple reviewers, and providing the electronic document to a processor for processing.
US10733176B2
The example embodiments are directed to a system and method for detecting phantom data items in a blockchain transaction. In an example, the method includes one or more of generating a transaction data set during a read phase of a blockchain transaction, the transaction data set including an identification of each query of the transaction executed during the read phase and results of each query, generating a validation data set by re-executing each query during a validation phase of the blockchain transaction, the validation data set including query results of each respective re-executed query, determining whether the blockchain transaction observes one or more phantom data items based on the query results of the transaction data set and the validation data set, and, in response to determining the transaction observes the one or more phantom data items, preventing the transaction data set from being written to the blockchain.
US10733173B2
A monitoring module interfaces with existing non-retrospective data storage systems, thus providing mechanisms for detecting and reporting changes in data values stored in such systems. The monitoring module acts as a change detection layer that can operate in connection with multiple disparate systems and/or locations, so as to provide users with a unified view into data stored in such systems. For example, a user can consult a single app, website, or software application, to view changes for data values stored in multiple disparate systems and/or locations; the app can be configured to automatically generate notifications and alerts to users, and can provide the ability to respond to such notifications and alerts, take actions, and/or dive deeper into underlying data.
US10733171B2
Lock table management is provided for a lock manager of a database system, in which lock management is provided in a manner that is fast and efficient, and that conserves processing, memory, and other computational resources. For example, the lock table management can use a hashmap in which keys and values are stored in separate arrays, which can be loaded into separate CPU cache lines.
US10733162B2
A system for indexing and searching includes an input interface and a processor. The interface is to receive a request to search for a term. The processor is to determine a search response based at least in part on a security associated with an index field and the term.
US10733160B1
Methods and systems maintain a distributed ledger of transactions pertaining to a particular vehicle. The method may include (1) receiving, by one or more processors, vehicle data from one or more remote computing devices; (2) detecting, by the one or more processors, a vehicle-related event from analysis of the vehicle data; (3) identifying, by the one or more processors, a VIN of the vehicle when a vehicle-related event is detected; (4) generating, by the one or more processors, a transaction including (i) the vehicle's VIN, and (ii) describing the vehicle-related event; and (5) transmitting, by the one or more processors, to a server the transaction to facilitate maintaining a VIN-based distributed ledger for the particular vehicle.
US10733159B2
Techniques for maintaining immutable data and mutable metadata in a storage system are disclosed. Each object is associated with one or more data records and one or more metadata records. Responsive to a request to modify the data of an object, a new data record and a new metadata record are generated for the object. The new data record stores the new data of the object. The new metadata record stores the new metadata corresponding to the new data of the object. Responsive to a request to modify the metadata of an object, an existing metadata record of the object is identified. The existing metadata record is overwritten with the new metadata of the object. No new data records or metadata records are generated.
US10733151B2
Techniques to share media files are described. An apparatus may comprise a processor and a memory communicatively coupled to the processor. The memory may store an application having a media share component operative to share a media file among a defined set of users. The media share component may comprise multiple software modules, including a file manager module and a file reference module. The file manager module may be operative to determine a network storage location for the media file. The file reference module may be operative to automatically generate a valid link to the network storage location for the media file. The valid link may be specifically arranged to permit access to the network storage location for the media file by the defined set of users of the application. Other embodiments are described and claimed.
US10733147B2
A method for data storage includes assigning multiple different portions of a given object, which is stored in non-volatile storage, for access by multiple respective software modules running on one or more processors. Storage operations are performed by the software modules in the portions of the given object. Respective local values, which are indicative of most-recent times the storage operations were performed in the given object by the respective software modules, are updated by the software modules. A global value is updated for the given object, by consolidating updates of the local values performed by the software modules.
US10733145B1
Techniques described and suggested herein include distributed deletion request processing and verification. For example, incident to migration of original data from a first data store to a second data store, verifications and confirmations related to removing the original data from the first data store may be performed so as to ensure the integrity of the original data represented on the second data store prior to removing the actual original data on the first data store. In some embodiments, the verifications and confirmations performed in connection with a deletion request may be apportioned to multiple entities, each of which may not fully trust the others. As a result, in some embodiments, a given deletion request may only be fulfilled if all of the entities involved in the verification process individually provide authorization to execute the deletion request.
US10733142B1
Embodiments are described for performing a storage tier-specific file system operation in a file system that comprises a namespace that spans multiple tiers of storage. A file system command can be a tier-specific deletion of files in a multi-tier file system, or a move data operation from a first tier of storage to a second tier of storage, affecting both the first and second tier of storage. The file system command can generate a copy of the namespace for the first tier of storage and a snapshot of the data of the first tier of storage referenced in the file system operation. Functionality may be performed using one or more storage appliances, each of which can have its open processing system, memory and storage device(s). Storage tiers can include active tier, cloud tier, and remote or archive storage tier.
US10733141B2
This disclosure relates to a distributed processing system for configuring multiple processing channels. The distributed processing system includes a main processor, such as an ARM processor, communicatively coupled to a plurality of co-processors, such as stream processors. The co-processors can execute instructions in parallel with each other and interrupt the ARM processor. Longer latency instructions can be executed by the main processor and lower latency instructions can be executed by the co-processors. There are several ways that a stream can be triggered in the distributed processing system. In an embodiment, the distributed processing system is a stream processor system that includes an ARM processor and stream processors configured to access different register sets. The stream processors can include a main stream processor and stream processors in respective transmit and receive channels. The stream processor system can be implemented in a radio system to configure the radio for operation.
US10733137B2
A method of low-latency direct data access to non-volatile flash memory in at least one NVMe-oF SSD device connected over Ethernet. The method includes transmitting, from a low-latency direct access (LL-DAX) block storage software layer at a host, a remote direct memory access (RDMA) write request to the flash memory. The RDMA write request includes data, a storage address, a length of a data transfer operation, and an operation code. The method also includes receiving, at the host, an RDMA level acknowledgement indicating that the data has been persisted to the flash memory. The method also includes transmitting, from the LL-DAX block storage software layer, an RDMA read request to the flash memory that includes a storage address, a length of a data transfer, and an operation code. The method also includes receiving, at the host, data packets from the flash memory corresponding to the RDMA read request.
US10733135B2
A Universal Serial Bus (USB) switch includes a host port and a plurality of USB device ports. Each USB device port is configured to be coupled to a respective plurality of USB devices. A USB interface is coupled to the host port. A switch matrix is coupled between the USB interface and the plurality of USB device ports and is configured to switch the USB interface to one of the plurality of USB device ports. A switch controller is coupled to the plurality of USB interfaces, the host port, and the switch matrix. The switch controller is configured to control operation of the USB switch.
US10733134B2
In accordance with embodiments of the present disclosure, an information handling system may include a motherboard, a plurality of information handling resources communicatively coupled to the motherboard, a socket communicatively coupled to the motherboard and configured to receive one of a plurality of different types of interposers, wherein each of the plurality of interposers is configured to provide routing of electrical signals between the socket and a respective system on a chip communicatively coupled to such interposer, and a configuration module. The configuration module may be configured to receive identifying information associated with an interposer, of the plurality of interposers, communicatively coupled to the socket and based on the identifying information, configure the plurality of information handling resources for interoperability with a system on a chip communicatively coupled to the interposer.
US10733131B1
In some examples, to define a connection path of an initiator to target ports of a plurality of controller nodes that manage access of data in a storage system, a provisioning system determines loads of respective sets of target ports, and selects a selected set of target ports from among the sets of target ports for inclusion in the connection path based on the determined loads.
US10733124B2
An embodiment of this disclosure provides an apparatus for use in an automated transaction system. The apparatus includes a first interface coupled to a primary bus, the first interface configured to permit communication of data. The apparatus also includes a second interface coupled to a secondary bus, the second interface configured to permit communication of the data. A network topology of the primary bus is different from a network topology of the secondary bus. The apparatus also includes at least one processing device coupled to the first interface and second interface. The at least one processor is configured to communicate the data over at least one of the first interface or second interface.
US10733121B2
Systems, methods, and apparatus for communicating virtual GPIO information generated at multiple source devices and directed to multiple destination devices. A method performed at a device coupled to a serial bus includes generating first virtual GPIO state information representative of state of one or more physical GPIO output pins, asserting a request to transmit the first virtual GPIO state information by driving a data line of the serial bus from a first state to a second state after a start code has been transmitted on a serial bus and before a first clock pulse is transmitted on a clock line of the serial bus, transmitting the first virtual GPIO state information as a first set of bits in a data frame associated with the start code, and receiving second virtual GPIO state information in a second set of bits in the data frame.
US10733116B2
A device connectable between a host computer and a computer peripheral over a standard bus interface is disclosed, used to improve security, and to detect and prevent malware operation. Messages passing between the host computer and the computer peripherals are intercepted and analyzed based on pre-configured criteria, and legitimate messages transparently pass through the device, while suspected messages are blocked. The device communicates with the host computer and the computer peripheral using proprietary or industry standard protocol or bus, which may be based on a point-to-point serial communication such as USB or SATA. The messages may be stored in the device for future analysis, and may be blocked based on current or past analysis of the messages. The device may serve as a VPN client and securely communicate with a VPN server using the host Internet connection.
US10733111B2
Apparatus comprises input circuitry to receive a translation request defining an input memory address within an input memory address space; and address translation circuitry comprising: permission circuitry to detect whether memory access is permitted for the input memory address with reference to permission data populated from address translation tables and stored in a permission data store for each of a set of respective regions of the input memory address space, there being a dedicated entry in the permission data store for each of the regions so that the input memory address maps to a single respective entry; and output circuitry to provide an output memory address in response to the translation request, in which when the permission circuitry indicates that access is permitted to a region of the input memory address space including the input memory address, the output circuitry is configured to provide the output memory address as a predetermined function of the input memory address.
US10733091B2
Transactional memory accesses are tracked using read and write sets based on actual program flow. A read and write set is associated with a range of instructions of a transaction. When execution follows a predicted branch, loads and stores are marked as being of selected read and write sets. Then, when a misprediction is processed, and execution is rewound, speculatively added read and write set indications are removed from the read and write sets.
US10733090B1
A memory management process monitors a communication channel for messages comprising allocation data corresponding to a first discrete memory region and receives a message comprising the allocation data. The memory management process executes a memory management decision for the first discrete memory region based on the allocation data, wherein the first discrete memory region is not addressable by the processing device.
US10733088B1
According to one method, the method occurs at a network equipment test device. The method includes receiving source code metadata derived from one or more source code files for programming a packet forwarding plane of a network node; analyzing the source code metadata to generate test metadata, wherein analyzing the source code metadata to determine the test metadata includes identifying source code metadata portions that indicate elements to test and determining the test metadata based on the elements; generating, using the test metadata, one or more test plans for testing the network node or an application programming interface (API) associated with the network node; and testing the network node or the API using the one or more test plans.
US10733087B2
A computing system may include a software application configured to receive instructions to merge a source code update with a branch of a software product, provide instructions to merge the source code update into the branch, and select software tests to execute on the branch as updated based on a portion of the branch modified by the source code update and a predetermined checkpoint within a development cycle of the software product. The software application may also be configured to provide instructions to execute the software tests on the branch as updated and receive feedback data indicating results of the software tests. The software application may be additionally configured to determine that the feedback data indicates that the branch as updated passed at least a threshold number of the software tests, and, in response, provide instructions to merge the branch as updated with a production branch of the software product.
US10733082B2
A computer program is stored in a computer-readable recording medium to implement a test group distribution method in a server device. The test group distribution method includes: generating identification information of a first test to be performed, differently from identification information of at least one test that is registered in advance, wherein the first test is performed by a plurality of user terminals classified into a plurality of groups; generating a unique identifier of each of users by using a first key comprising identification information of each user and a second key comprising the identification information of the first test; and determining test group information of each user based on the unique identifier of each user, the test group information corresponding to a group to which each user belongs.
US10733074B1
A processing device receives first specification information for an executable functional programming feature from a program and second specification information for the executable functional programming feature from a specification associated with the program. The processing device aggregates the first specification information with the second specification information to form combined specification information for the executable functional programming feature. The processing device verifies the executable programming feature using the combined specification information.
US10733070B2
A functional test execution engine (“FTEE”) may be configured to execute test scripts with respect to a server stack. The FTEE may be communicatively coupled to a test script storage device, which may store the test scripts. The FTEE may select one or more test scripts for execution with respect to the server stack. The one or more test scripts may carry out maintenance or diagnostic functions for the server stack. The FTEE may determine the processing resources of the server stack and, based on those processing resources, select a first set of test scripts from the one or more test scripts to execute. The FTEE may cause the first set of test scripts selected to execute with respect to the server stack in order to generate test script results. The FTEE may store the test script results for subsequent analysis and use during execution of subsequent test scripts.
US10733052B2
The disclosure provides a method for accelerating the rebuilding of storage arrays. The method comprises identifying a failure of an original storage device that is a member of a storage array and reconstructing lost information that was on the original storage device onto one or more first storage devices based on information stored on one or more of remaining members of the storage array. Each of the one or more first storage devices has a higher I/O throughput than the original storage device.
US10733051B2
Techniques are presented for maintaining data distributed across a plurality of storage drives (drives) in a robust manner. A method includes (a) collecting physical state information from each drive of the plurality of drives, (b) generating a predicted failure probability of each drive based on the collected physical state information from that drive, the predicted failure probability indicating a likelihood that that drive will fail within a predetermined period of time, and (c) rearranging a distribution of data across the plurality of drives to minimize a probability of DU/DL. Systems, apparatuses, and computer program products for performing similar methods are also provided.
US10733048B1
A method and circuit are disclosed to calculate an error correction code (ECC) and perform a decryption in parallel when reading memory data. There are multiple modes of operation. In a normal parallel mode of operation, the data passes through a decryption engine. Simultaneously, the same data passes through an ECC decode engine. However, if no error is detected, the output of the decode engine is discarded. If there is an ECC error, an error indication is made so that the corresponding data exiting the decryption engine is discarded. The circuit then switches to a serial mode of operation, wherein the ECC decode engine corrects the data and resends the corrected data again through the decryption engine. The circuit is maintained in the serial mode until a decision is made to switch back to the parallel mode, such as when a pipeline of the ECC engine becomes empty.
US10733042B2
Implementations of the present disclosure relate to a method and apparatus for handling an error for a drive. The logic space of the drive is divided into a plurality of extents. The method comprises determining a type of errors in response to the errors detected in I/O operations for the drive. The method further comprises determining a drive extent of the plurality of extents of the drive that causes the errors in response to determining that the type of the errors is a soft medium error or a data error, the soft medium error being an error that can be repaired by re-mapping of a failed extent and the data error being an error that is caused by damage of data on the drive. Furthermore, the errors can be handled only with respect to the drive extent that causes the errors.
US10733041B2
Systems for achieving and maintaining a specified state of a computing resource in a distributed computing environment. A method embodiment commences upon receiving one or more specification parameters that describe a desired target state associated with a particular computing resource and/or of a particular computing environment. The specification parameters that characterize the desired target state of a resource are recorded in a target state data structure. Periodically, an agent issues a state progression query to determine if the computing resource has reached its desired target state. The query is then processed by collecting state parameters that describe the then-current state of the computing resource or environment. The target state data structure is accessed to identify one or more state differences between the desired target state and the then-current state of the particular computing resource and/or its particular computing environment. Remediation operations based on the state differences are then carried out.
US10733040B2
Individual bug fixed messages for software users that includes determining an occurrence of an error in software executing on a user processor. A unique error report identifier is stored in a memory accessible by the user processor and the error is reported. The reporting includes transmitting the unique error report identifier and error data that describes the error to a developer server. The error data is analyzed to determine a fix to correct the error. A message regarding the fix to correct the error is stored in a fixed error database. The software is launched and it is determined that the error was previously reported. The fixed error database is queried by the software with the unique error report identifier to locate the message. Based on locating the message, the message is downloaded and displayed by the user processor.
US10733032B2
A method, information processing system, and computer program product are provided for managing operating system interference on applications in a parallel processing system. A mapping of hardware multi-threading threads to at least one processing core is determined, and first and second sets of logical processors of the at least one processing core are determined. The first set includes at least one of the logical processors of the at least one processing core, and the second set includes at least one of a remainder of the logical processors of the at least one processing core. A processor schedules application tasks only on the logical processors of the first set of logical processors of the at least one processing core. Operating system interference events are scheduled only on the logical processors of the second set of logical processors of the at least one processing core.
US10733021B2
Disclosed is a cloud computing system that includes: a core cloud part that stores and manages the cloud service in the core cloud server; and an edge cloud part that is arranged on a network node connected with the client terminal to form an edge cloud server, operates a portion or an entirety of a cloud service of the core cloud part at the edge cloud server, and stores and manages data of said service or receive cloud service packet information from the core cloud part to provide the cloud service to the client terminal. The edge cloud part includes an edge cloud awareness part that determines whether or not identification is possible for a cloud service request signal transmitted from a publisher client terminal, and an edge cloud processing part that determines whether or not to provide the cloud service corresponding to the request signal.
US10733017B2
Provided is a task scheduling method. The method may include: assigning a task to one of first processing units functionally connected to an electronic device; and migrating, at least partially on the basis of a performance control condition related to the task, the task to one of second processing units for processing.
US10733011B2
The subject technology addresses the need in the art for improving intra-cloud migration of virtual machines in a cloud computing environment. A hash database may be prepopulated with key-value pairs corresponding to hash IDs and associated data chunks of a virtual machine image. In this regard, the virtual machine image may be divided into chunks using boundaries chosen by a Rabin fingerprinting technique. A hash (e.g., MD5 or SHA-1) may be computed over each chunk and act as a unique identifier for the data contained in each chunk. At appropriate times, one or more hash IDs are sent instead of the actual data chunks between clouds when performing the inter-cloud migration of a virtual machine.
US10733010B2
The current document is directed to automated application-release-management facilities that, in a described implementation, coordinate continuous development and release of cloud-computing applications. The application-release-management process is specified, in the described implementation, by application-release-management pipelines, each pipeline comprising one or more stages, with each stage comprising one or more tasks. The currently described methods and systems check whether endpoints and external tasks are reachable prior to initiating execution of application-release-management pipelines. Automatic reachability checking is scheduled for idle intervals, when the workflow-execution-engine component of the automated application-release-management facility is not executing release pipelines.
US10733009B2
An information processing apparatus includes a first processor and a second processor. The first processor executes a virtualization program for activating a virtual machine on the first processor. The first processor acquires operation information at a predetermined sampling cycle while executing a program in the virtual machine. The first processor creates key information for aggregating the operation information based on an identifier or register value included in the acquired operation information. The second processor calculates an aggregation value of the key information by aggregating the acquired operation information in accordance with the created key information. The second processor outputs, when the aggregation value of the key information satisfies a predetermined condition, the identifier or register value included in the key information in association with a name identifier defined in the virtualization program or the program executed in the virtual machine together with the aggregation value of the key information.
US10733007B2
Application management is facilitated by observing messages communicated amongst virtual applications external to application-hosting virtual machines. In one instance, the messages can be observed from within a virtual switch outside hosting virtual machines. One or more actions can subsequently be performed as a function of the messages such as but not limited to application monitoring as well as message routing, filtering, and/or transformation.
US10733004B2
Robots may be automatically instantiated, modified, evolved, trained, or terminated based on location, time of day, user preference, special event trigger, or emergency. The robots may perform tasks to provide selective services on-demand within medicine, agriculture, military, entertainment, manufacturing, personal, or public safety, among other things.
US10732998B2
The present invention relates to a method for dynamically modifying the user interface of a deployed application. The method including: a deployed application executing on a user device in accordance with pre-stored configuration data to provide at least part of the user interface; and the deployed application receiving modified configuration data from a server. The at least part of the user interface may be modified in accordance with received modified configuration data. The present invention also relates to a method for dynamically modifying the user interface of a deployed application. The method includes a deployed application executing on a device in accordance with pre-stored configuration data to provide at least part of the user interface; and the deployed application modifying at least part of the user interface in response to user input. The at least part of the user interface may be user interface navigation data. A user device and system are also disclosed.
US10732996B2
A device may include a dynamic function row (DFR) comprising a touchscreen. A device processor may operate a DFR agent controlling the DFR. The DFR agent may generate and/or select images to display on the DFR based on rules and/or contexts, and the DFR may display the images.
US10732989B2
A smart device receives applications from locales wherein the application is useful only within the locale or a designated portion of the locale. The smart device includes a processor. The processor receives a signal indicating an application useful in a locale or a portion of the locale is available from a designated location, determines whether the device is authorized to download the application from the designated location, and if not, not download the application. If the device is authorized to download the application from the designated location, the processor determines whether the application is already stored in the device memory, and if so, runs the application when the smart device is in the designated portion of the locale, and if not, download the application from the designated location, and run the application when the smart device is in the locale or the designated portion of the locale.
US10732986B2
Described is a computing platform, which comprises: a non-volatile memory having a firmware boot program; and a CPU to execute the firmware boot program when the CPU is reset, the firmware boot program including instructions to create Power and Performance Measurement (PPM) interface data structures including an error injection table structure to provide error injection services to an OS.
US10732980B2
An apparatus and method are provided for controlling use of a register cache. The apparatus has decode circuitry for decoding instructions retrieved from memory, execution circuitry to execute the decoded instructions in order to perform operations on data values, and a register file having a plurality of registers for storing the data values to be operated on by the execution circuitry. Further, a register cache is provided that comprises a plurality of entries, and is arranged to cache a subset of the data values. Each entry is arranged to cache a data value and an indication of the register associated with that cached data value. Prefetch circuitry is then used to prefetch data values from the register file into the register cache. Further, operand analysis circuitry derives source operand information for an instruction fetched from memory, at least prior to the decode circuitry completing decoding of that instruction. It then causes provision to the prefetch circuitry of at least one register identifier determined from the source operand information. The prefetch circuitry then utilises that at least one register identifier when determining which data values to prefetch into the register cache. Such an approach can significantly increase the hit rate within the register cache, hence improving performance.
US10732967B1
Methods, systems, and computer-readable media for safe deployment of configurations to server fleets are disclosed. A host processes requests to a service according to a control versions of a first configuration and a second configuration. After receiving an experimental version of the first configuration, a host processes some requests to the service according to the control versions of the first configuration and the second configuration, and other requests according to the experimental version of the first configuration and the control version of the second configuration. The experimental version of the first configuration is approved or rejected based at least in part on performance of the service. The host then processes some requests to the service according to the experimental version of the first configuration and the control version of the second configuration, and other requests according to the experimental versions of the first configuration and the second configuration.
US10732965B2
The present disclosure provides systems and methods for dynamically generating subjective questionnaires on programming concepts in a natural language with desired number of unique questions and having a desired level of difficulty. Conventionally known systems and methods are based on pre-defined templates without any emphasis on logic building for various business scenarios and mostly cater to objective type multiple choice questions. Dynamic generation of subjective questions that are customized to address the needs of each trainee based on an earlier evaluation to make his/her training effective is critical to an effective training. The present disclosure achieves this by providing operations wherein logic building is driven through entities and fields identified for a specific business scenario.
US10732959B2
A software update is downloaded from an update server responsive to an update trigger. A pre-installation bus traffic fingerprint is created responsive to completing the download. The software update is installed to the vehicle responsive to creating the pre-installation bus traffic fingerprint. A post-installation bus traffic fingerprint is created responsive to installing the software update. Success of the install is indicated to the update server based on comparing the pre-installation and post-installation bus traffic fingerprints.
US10732942B2
This disclosure relates to methods, non-transitory computer readable media, and systems that use a design-component-neural network to categorize a design component from an interface-design file as a platform widget corresponding to a particular computing platform. Having categorized the design component as a platform widget, in certain implementations, the disclosed systems compare and validate properties of the design component against user-interface guidelines for the particular computing platform. Upon determining that the design component does not comply with a user-interface guideline, the systems can provide and implement options to modify the design component to comply with the user-interface guideline.
US10732938B2
A system design apparatus has a metamodel definition unit that generates a second metamodel based on a first metamodel described using a modeling language, the second metamodel including the first metamodel, a metamodel of a condition class which describes a condition, and a metamodel which describes an association between the condition class and a trace in order to distinguish presence or absence of the condition with respect to the trace, a model construction unit that constructs a model according to the second metamodel, and a script file generation unit that generates a script file corresponding to the model.
US10732936B2
User modeling facilitates use of a UML user model to define roles, goals, and tasks inside an organization, and defines how the roles, goals, and tasks relate to business entities within the organization. This information can be used to generate a user interface (UI) that facilitates management of the defined business entities within the organization. Each task defined inside the model, which may be represented as a stereotyped class in the UML class diagram, has a number of explicit steps associated with the task. These steps are outlined in UML activity diagrams and defined in a task interaction pattern. A modular approach to constructing UML activity diagram using the task interacting pattern to reduce the size of the model permits greater flexibility in generating the UI.
US10732931B2
A negative-operand compatible subtractor circuit can be fabricated within an integrated circuit (IC) and can be configured to draw a difference output node to a voltage proportional to a difference between two received N-bit binary numbers. The subtractor circuit includes two sets of N inputs that receive N-bit binary numbers, each set of N inputs indexed by an integer bit number “n.” The subtractor circuit includes two sets of scaled capacitors, each capacitor of two sets of scaled capacitors electrically connected to the difference output node. Each scaled capacitor has a capacitance equal to 2(n)*a unit capacitance (CUNIT). The subtractor circuit includes a reset circuit configured to draw, in response to a received RESET signal, the difference output node to ground. A control circuit of the subtractor is configured to, in conjunction with the reset circuit, draw the difference output node to a reset voltage.
US10732916B2
Two separate executing agents that execute on two separate devices coordinate to animate objects between two separate displays. The agents take control and pass control of the objects presented on the displays between one another and a common scene can be synchronized between the two displays by the agents. The objects are animated and rendered on the displays by the agents.
US10732909B2
An image forming apparatus for optimizing an operating environment of a virtual machine executed therein includes a memory to store a computer executable instruction, and at least one processor to set the operating environment of the virtual machine by executing the computer executable instruction, based on configuration information regarding the operating environment of the virtual machine corresponding to one operating mode selected by a user from among operating modes of the virtual machine executed in the image forming apparatus.
US10732908B2
A system of facilitating printing of shipping labels includes a computing device and a label printer. The computing device receive shipment database data from a remote computing device, store the shipment database data in a shipment database, receive scan data associated with an object from a scanning device, determine whether shipment data for the object is in the shipping database, determine shipping information for the object based on whether shipment data for the object is in the shipping database, and send shipping information to the label printer. The shipping information for the object is based on whether shipment data for the object is in the shipping database. The label printer prints a shipping label for the object based on the shipping information.
US10732895B2
A storage controller is provided. The storage controller includes a host interface, a drive interface, and a quality of service control module coupled with the host interface and the drive interface. The QoS module includes read and write queues for each data stream, each queue associated with corresponding token buckets, and an arbiter, configured to receive requests from the read and write queues, and to service the read and write queues in an order at least partially determined by a quantity of tokens in each token bucket. The QoS module also includes a quality of service measurement module, configured to measure quality of service levels for each of the read and write queues, and a bandwidth allocation manager, configured to allocate tokens to each token bucket at a rate corresponding to the service level agreements and the measured quality of service level for each of the read and write queues.
US10732887B2
The present disclosure provides a cable modem and an operating method thereof. This method includes steps as follows. After receiving a boot command, it is checked whether a boot data of a main storage area of a flash memory is complete. When the boot data of the main storage area of the flash memory is not complete, a backup data is copied from a backup storage area to overwrite the boot data of the main storage area. Then, the boot data in the main storage area is used to continue the boot process.
US10732866B2
A processor includes a plurality of memory units, each of the memory units including a plurality of memory cells, wherein each of the memory units is configurable to operate as memory, as a computation unit, or as a hybrid memory-computation unit.
US10732864B2
A data storage device includes a power input port, a nonvolatile memory module, a controller for the nonvolatile memory module, and a power analyzer electrically coupled to the power input port. The power analyzer is configured to receive input power from the power input port, determine power data associated with the data storage device based on the input power, and store the power data in a memory of the power analyzer.
US10732861B2
Embodiments of the present disclosure relate to facilitating efficient access to electronic content via an intermediate caching layer between a client device and remote storage system. In particular, systems and methods disclosed herein generate and maintain a regional cache on a data center that includes a subset of digital content items from a collection of digital content items stored on the remote storage system. For example, in response to receiving a data request, the systems and methods disclosed herein determine whether a digital content item corresponding to the data request exists on an intermediate caching layer including both a local data center and one or more remote data centers. The systems and methods facilitate obtaining copies of requested digital content items from the regional caches when available, resulting in faster responses to data requests while decreasing a number of times a client directly accesses the remote storage system.
US10732860B2
Examples described herein include receiving a first data write request from a host computing device, assigning a first identification to the first data write request, recording the first identification in in-flight data, transmitting the first data write request to a second storage array, receiving a first acknowledgement of the first data write request from the second storage array, and recording an indicator representing a group of acknowledgements. In some examples, the group of acknowledgements comprises the first acknowledgment.
US10732856B2
An exemplary method to rank blocks of a non-volatile memory device includes: for each of a plurality of blocks of a memory device, determining a respective erase health metric (EHM) for each of the blocks by combining an erase difficulty metric and an age metric, including: calculating the erase difficulty metric for a respective block based on erase performance metrics obtained during erase phases of an erase operation performed on the respective block, and determining the age metric for the respective block based on a total number of erase operations performed on the respective block during its lifespan. After determining the respective EHM for each of the blocks, the method includes ranking blocks in accordance with the determined respective EHMs, and selecting a block of the plurality of blocks in accordance with the rankings, and writing data to the selected block.
US10732854B2
A data processing system and a method of runtime configuration of the data processing system are disclosed. The data processing system comprises a plurality of home nodes, and for a data store associated with a slave node in the data processing system, for each home node of the plurality of home nodes a modified size of the data store is determined. The modified size is based on a storage capacity of the data store and at least one additional property of the data processing system. A chosen home node of the plurality of home nodes is selected which satisfies a minimization criterion for the modified size, and the chosen home node is paired with the slave node.
US10732853B2
Techniques for dynamically changing the amount of memory that is allocated to and used by processes (e.g., sorter processes) executed concurrently by a data processing system in a manner that is adaptive to the overall memory usage of the system. The ability to dynamically change the amount of memory that can be allocated to and used by individual processes increases and optimizes the overall memory utilization of the data processing system, which in turn results in the operations (e.g., sorting) performed by the processes to be performed in a more efficient manner. A memory manager is provided that is responsible for periodically collecting memory related information for the data processing system and for the processes (e.g., sorter processes) executed by the data processing system, and based on the collected information, for periodically and dynamically causing the memory used by the processes to be changed during the lifetime of the processes.
US10732848B2
Systems and methods for predicting read commands and pre-fetching data when a memory device is receiving random read commands to non-sequentially addressed data locations are disclosed. A limited length sequence of prior read commands are generated and compared to a read command history datastore. When a prior pattern of read commands is found corresponding to the search sequence, a next read command that previously followed that search sequence may be used as a predicted next read command and data pre-fetched based on the read command data location information associated with that prior read command that is being used as the predicted read command.
US10732833B2
The present invention relates to a mobile terminal providing one hand mode for distinguishing a view area from a control area on a touch screen and a method of controlling therefor.To achieve these objects and other advantages and in accordance with the purpose of the invention, according to one embodiment, a mobile terminal includes a touch screen, and a controller configured to enter one hand mode that divides the touch screen into a view area and a control area in response to a first control input inputted on the touch screen, the controller, if the mobile terminal enters the one hand mode in a state that a default keypad is outputted on the touch screen, configured to control a simple keypad to be outputted on the control area instead of the default keypad.
US10732832B2
Apparatuses and methods are disclosed for form operation on a mobile terminal. An exemplary method may include detecting an input hand gesture on a screen, and acquiring a trajectory of the input hand gesture. The method may also include matching the acquired trajectory of the input hand gesture with the hand gestures in correspondence in accordance with the hand-gesture comparison rules. The correspondence between hand gestures, hand-gesture comparison rules, and form operations is preset. The method may further include triggering a corresponding form operation if the matching is successful.
US10732831B2
The invention relates to a method for detecting a user input for an input device having a plurality of switch elements, wherein a control action with a marking gesture and a selection gesture is detected. In doing so, at least one first and one additional switch element are marked sequentially in a specific sequence using the marking gesture, wherein initially the first switch element and then the at least one additional switch element is marked. Using the selection gesture, the marked switch elements are selected sequentially in reverse sequence. Depending on the selected switch elements, control signals are generated and output. The invention furthermore relates to an input device having a plurality of switch elements, a control unit and a detection unit by means of which a control action with a marking gesture and a selection gesture is detectable. In doing so, at least one first and one additional switch element are markable sequentially in a specific sequence using the marking gesture, wherein initially the first switch element and then the at least one additional switch element is markable. Depending on the selection gesture, the marked switch elements are sequentially selectable in the reverse sequence, and control signals can be generated and output depending on the selected switch elements.
US10732811B1
Various examples are directed to a virtual reality trading tool and methods of using the same. A computing device may receive an indication of a first metric from a first administrator user computing device. The computing device may generate a first value of the first metric for a first plurality of trades requested by a first set of users receiving a first virtual reality user interface (UI) corresponding to a first virtual room and a second value of the first metric for a second plurality of trades requested by a second set of users receiving a second virtual reality UI corresponding to a second virtual room. The computing device may serve an administrator UI to the administrator user computing device. The administrator UI may comprise a first virtual room feature indicating the first value for the first metric and a first join feature associated with the first virtual room feature and selectable by an administrator user of the administrator user computing device to join the first virtual room.
US10732810B1
Various systems and methods are provided for accessing and traversing one or more complex data structures and generating a functional user interface that can enable non-technical users to quickly and dynamically generate detailed reports (including tables, charts, and/or the like) of complex data including time varying attributes and time-series data. The user interfaces are interactive such that a user may make selections, provide inputs, and/or manipulate outputs. In response to various user inputs, the system automatically calculates applicable time intervals, accesses and traverses complex data structures (including, for example, a mathematical graph having nodes and edges), calculates complex data based on the traversals and the calculated time intervals, displays the calculated complex data to the user, and/or enters the calculated complex data into the tables, charts, and/or the like. The user interfaces may be automatically updated based on a context selected by the user.
US10732806B2
Systems and methods are disclosed for incorporating user content within a communication session interface. In one implementation, a processing device receives, in relation to a communication session between a first user and a second user, a communication input associated with a first user. The processing device processes the communication input to identify one or more content items stored on a content sharing platform that are associated with the first user and that pertain to one or more aspects of the communication input. The processing device modifies one or more aspects of an interface of the communication session based on the one or more content items.
US10732799B2
A method and a portable communication device are provided. The portable communication device includes a touch screen, memory, and a processor adapted to identify, with respect to a plurality of images stored in the memory, first tag information corresponding to a location at which a first image of the plurality of images is taken, second tag information corresponding to an object recognized from the first image or a second image of the plurality of images, and third tag information corresponding to a specified application used to acquire the first image, the second image, or a third image of the plurality of the images, display, via the touch screen, a first menu related to the first tag information, a second menu related to the second tag information, or a third menu related to the third tag information, receive a selection of the first menu, the second menu, or the third menu, and display, via the touch screen, a user interface of a first user interface corresponding to the first menu, a second user interface corresponding to the second menu, and a third user interface corresponding to the third menu, based at least in part on the selection of a corresponding menu of the first menu, the second menu, and the third menu.
US10732790B2
An electronic device displays one or more thumbnails. The device detects a first multi-contact gesture that includes movement of a first contact and a second contact; and, in response to detecting the first multi-contact gesture, the device displays content associated with a respective thumbnail and enlarges the content associated with the respective thumbnail to a respective enlarged size in accordance with the first multi-contact gesture. The device detects termination of the first multi-contact gesture; and, in response to detecting termination of the first multi-contact gesture: when a resizing metric based on the first multi-contact gesture is below a predefined threshold, the device ceases to display the content at the respective enlarged size; and, when the resizing metric based on the first multi-contact gesture is above the predefined threshold, the device displays the content on the display in a predefined arrangement.
US10732783B2
An image chat application generates comments to images based on features of the images. In one example, the image chat application searches through a repository of stored image-comment pairs to identify a stored image that is similar to the image, and generates a comment to the image based on an identified stored image-comment pair. In another example, the image chat application may identify and tag particular objects that dominate an image, and may generate a comment to the image based on characteristics of those particular objects. In this second example, the image chat application further generates a comment to the image based on comments previously associated with the identified tag.
US10732778B2
A biometric sensing apparatus is employed by a person in order to obtain biometric data. Transmitting and receiving antennas are used in order to transmit and receive signals. Measurements of the received signals are correlated with biological activity in order to provide biometric data.
US10732777B2
A controller for a sensor is configured to receive a control signal from an external device, the control signal corresponding to potential interference. The controller adjusts a sensing parameter using the control signal to avoid the potential interference. The potential interference is at least one of an electrical interference and an optical interference. The controller may include a sensor module that includes circuitry configured to acquire resulting signals with sensing elements using the adjusted sensing parameter.
US10732776B2
An electronic apparatus may include a plurality of first sensor patterns and a plurality of second sensor patterns, each of which includes an outer line and an inner line, a plurality of first connection patterns electrically connecting the plurality of first sensor patterns, a plurality of second connection patterns electrically connecting the plurality of second sensor patterns, the second connection patterns being provided at a level different from that of the plurality of first connection patterns, and a third sensor pattern provided in an internal region enclosed by the inner line in a plan view.
US10732774B1
An aircraft includes a cursor control device having a defined return path for the touch sensor so that the impedance in the return path is known. The defined return path is embodied in a conductive feature in the cursor control device palm contact area to ground the user and improve the system's signal to noise ratio. The defined return path normalizes signal variability due to environmental factors and user specific factors such as finger size, skin moisture, contaminants, etc.
US10732773B2
In one embodiment, a method includes receiving one or more sense signals from a touch sensor of a device, comparing a value associated with the one or more sense signals to a first threshold, and determining, based on comparing the value to the first threshold, whether an object has come within a pre-determined proximity of a first pre-determined location at a surface of the device. The method further includes comparing the value associated with the one or more sense signals to a second threshold and determining, based on comparing the value to the second threshold, whether the object has come within a pre-determined proximity of a second pre-determined location at the surface of the device.
US10732754B2
According to one embodiment, a display device includes first and second substrate units, a display function layer, and a drive element. The first substrate unit includes a first substrate, a display unit, and a control circuit unit. The first substrate has a first surface including a display region and a peripheral region. The display unit is provided in the display region, and includes first lines, second lines, switch elements, pixel electrodes, and third lines. The control circuit unit is provided in the peripheral region, and includes a first circuit unit including a third line connection line, and a third line switch. The second substrate unit includes a second substrate and fourth lines. The display function layer is provided between the first and second substrate units. The drive element is provided on the peripheral region. The first circuit unit is partially disposed between the drive element and the first substrate.
US10732752B1
The present disclosure provides a display panel and a display device, including: a display area and a non-display area, that the display area includes data lines, and the non-display area includes a binding area including conductive pads; a multiplex distribution circuit including demultiplexers, that each of demultiplexers includes: one input terminal, N output terminals, N first switching elements; and connecting lines. The one input terminal and the conductive pads are electrically connected, and the N output terminals are electrically connected to the data lines. First electrodes of the N first switching elements are electrically connected to the one input terminal, and second electrodes are electrically connected to the N output terminals. The demultiplexers include at least one first demultiplexer. The N First switching elements of the at least one first demultiplexer are disposed in the display area. N is a positive integer and N≥2.
US10732751B2
According to one embodiment, a lateral-electric-field liquid crystal display device includes a light-emitting display layer including OLEDs and a driving circuit controlling light emission of the OLEDs, a moisture impermeable film provided to be laminated on the light-emitting display layer to prevent infiltration of moisture into the light-emitting display layer, an optical substrate provided separately from the moisture impermeable film and subjecting light from the light-emitting display region to optical processing, a first touch electrode group serving as one electrode group of touch electrodes and provided on a back surface of the optical substrate, and an extraction electrode group formed to be laminated on the moisture impermeable film, the extraction electrode group and the optical substrate have an overlapping part in plan view, and electrodes of the first touch electrode group being electrically connected to electrodes of the extraction electrode group in the overlapping part.
US10732741B2
A conductive element includes wiring having a flat portion at a top portion and including metal particles. An average value of a ratio of a width of the flat portion to a width of the wiring is 20% or more. An average value of arithmetic average roughness of the top portion is 1 μm or less.
US10732736B2
An interactive device stylus includes a stylus body, a stylus cap disposed at a front end of the stylus body, and a stylus head disposed on the stylus cap. The stylus head is fixed to a front end of the stylus cap via a connecting piece, a through-hole is provided in the connecting piece, and the inner diameter of the through-hole gradually decreases from the inside of the connecting piece to a free end of the connecting piece, so that a limiting portion is formed at the free end of the connecting piece. The stylus head is engaged in the connecting piece via the limiting portion. A fixing rod is provided in the stylus cap, and an end of the fixing rod is pressed against the stylus head.
US10732734B2
A signal transmitting circuit prevents oscillation efficiency from dropping regardless of changes in transmission signal frequency. The signal transmitting circuit includes a switch circuit that enables a current to flow to a resonance circuit including a capacitor and a coil to provide energy that sustains resonance of the resonance circuit, and a control signal generating circuit that generates a control signal to control changeover of the switch circuit, thereby outputting a transmission signal having a resonance frequency of the resonance circuit. The control signal generating circuit includes a detection circuit that detects a cycle of the transmission signal, a timing generating circuit that generates a timing point at which the changeover control signal is generated based on a detection result of the detection circuit, and a drive circuit that generates the control signal at the timing point generated by the timing generating circuit to control changeover of the switch circuit.
US10732721B1
Mixed reality glasses allow, a user to input into the glasses, to operate a device sanitarily. The glasses are connected, to the device wirelessly. The user views holograms in mid-aid air, while looking through the glasses. The holograms are input buttons, for the device. The user's input into the glasses, activates the holographic input buttons. User input devices in the glasses detect the user's input. User input devices include, an eye tracker, a voice recognition device, an eye gaze and hand gesture input device, a touch input device, and a thought input device. The devices operated by the glasses, may include, an elevator, a smart toilet, and a medical device. The user operates the device, touch freely, without touching the device's physical input buttons. Contact with harmful bacteria is deceased by operating the device, touch freely, which avoids bacteria, that may be on the device's input buttons.
US10732719B2
An approach is disclosed that detects an input instrument hovering a distance away from an object displayed on an input surface and performing an action in response to the detection.
US10732718B2
A portable terminal includes an apparatus for improving motion detection capability. More particularly, the apparatus improves motion detection capability by changing a motion in a normal state according to a motion state or by changing a motion detection process in the portable terminal in order to avoid motion detection capability deterioration in the portable terminal are provided. The apparatus includes a terminal state determiner that determines a motion state of the terminal by receiving sensing information for determining the motion state, and a controller that changes a motion detection process according to the portable terminal's motion state determined by the terminal state determiner.
US10732717B2
A tactile sensation presenting device includes a vibrating element configured to present vibration information, a heater configured to present heat information, and a first heat insulating member disposed between the vibrating element and the heater. The heater is provided above the vibrating element and is provided at a contacting region which can be touched by an operating body.
US10732706B2
A method is disclosed including providing a plurality of sets of virtual reality video content, the sets representing respective three-dimensional virtual spaces within which a user can be immersed and being associated with respective three-dimensional portions of a real-world space such that, when rendered to a user device, there is a partial overlap between at least two virtual spaces defining one or more overlapping zones. The method may also include determining the position of a user device within the real-world space and rendering one or more of the virtual spaces, or representation(s) thereof, for display to the user device dependent on the determined position or movement within the real-world space.
US10732684B2
According to at least one example embodiment, a method and corresponding apparatus for controlling power in a multi-core processor chip include: accumulating, at a controller within the multi-core processor chip, one or more power estimates associated with multiple core processors within the multi-core processor chip. A global power threshold is determined based on a cumulative power estimate, the cumulative power estimate being determined based at least in part on the one or more power estimates accumulated. The controller causes power consumption at each of the core processors to be controlled based on the determined global power threshold. The controller may directly control power consumption at the core processors or may command the core processors to do so.
US10732682B2
A passenger control unit (PCU) network is provided for a passenger aircraft having passenger seats in a plurality of zones, each zone having at least one column of seats, and each column having at least one row of seats. The PCU network includes a direct current (DC) power distribution system, and a plurality of wired PCUs, one PCU associated with each passenger seat and coupled to the DC power distribution system. Each PCU has a processor and system memory and a standard data and power interface, the processor being programmed for differential peer-to-peer communication with adjacently interconnected PCUs throughout the PCU network and with an external system of the aircraft. A PCU of one seat of each row is serially coupled to all PCUs in the respective row, and designated as a row master PCU; a PCU of one seat of each column is serially coupled to all row master PCUs in the respective column, and designated as a column master PCU; a PCU of one seat of each zone is serially coupled to all column master PCUs in the respective zone, and designated as a zone master PCU; and one zone master PCU is designated as a PCU system master and connected to an external system. Two-conductor data wires couple all PCUs within the PCU network.
US10732676B2
Embodiments are directed to an electronic device having an illuminated body that defines a virtual or dynamic trackpad. The electronic device includes a translucent layer defining a keyboard region and a dynamic input region along an external surface. A keyboard may be. positioned within the keyboard region and including a key surface and a switch element (e.g., to detect a keypress). A light control layer positioned below the translucent layer and within the dynamic input region may have a group of illuminable features. The electronic device may also include a group of light-emitting elements positioned below the optical diffuser. One or more of the light control layer or the group of light-emitting elements may be configured to illuminate the dynamic input region to display a visible boundary of an active input area. At least one of a size or a position of the visible boundary may be dynamically variable.
US10732663B2
A knob for mounting on a control lever includes a knob body and a cavity formed in the knob body extending from a lower end of the knob body having a lower opening. The knob also includes a cantilever arm within the cavity connected to an interior connection portion of the knob body remote from the lower opening and extending substantial parallel to an interior of the knob body to the lower opening. The cantilever arm includes a projection formed on a side of the cantilever arm to engage a connecting portion of the control lever.
US10732660B2
An method comprising activating an internal switch within a packaged electronic device to connect to a reference ground of an internal voltage source to a first input of an analog front end, receiving an external ground potential voltage at a first package pin of the packaged electronic device, generating a zero detector output signal for the packaged electronic device at a second package pin, activating the internal switch to connect the first input of the analog front end to the internal voltage source, receiving a second voltage level at the first package pin that generates a second output signal that matches the zero detector output signal, and receiving trim instructions to trim an internal voltage generated by the internal voltage source to a voltage level that is closer to a target voltage level.
US10732659B2
A device includes an energy unit coupled to an energy device and adapted to couple a pair of split DC rails. A controller senses the voltage on the DC rails and regulates its output current response by means of an autonomous current response that creates the aggregate effect of controlling the rail voltage in cooperation with other units coupled to the DC rails. A system includes multiple such devices coupled to split DC rails.
US10732637B2
A path controller for guiding an autonomous vehicle along a desired path may include an input module that may receive input signals such as, a normal error signal that indicates an off-path deviation of the autonomous vehicle relative to a desired path, a heading signal, and a curvature signal associated with the autonomous vehicle. The path controller may also include a curvature rate module that calculates a curvature rate output signal to guide the autonomous vehicle along the desired path and a communication module that communicates the curvature rate output signal to a steering control system.