Abstract:
Cleaning systems and methods for semiconductor fabrication use rotatable and optionally translatable chuck assemblies that incorporate magnetic levitation and rotation functionality to cause chuck rotation. The rotating chuck components do not physically contact other chuck components when levitated and rotating. This eliminates corresponding components whose friction or lubricants might generate contamination. The low friction chuck functionality of the present invention is useful in any fabrication tool in which a workpiece is supported on a rotating support during a treatment. The chuck is particularly useful in cryogenic cleaning treatments. By avoiding the use of lubricants for this rotating interface, process chambers can be evacuated and/or vented up to higher pressures much faster. This significantly reduces cycle time for cryogenic treatments.
Abstract:
A wafer edge lift pin of an apparatus for manufacturing a semiconductor device is described. The wafer edge lift pin includes an offset top section containing a notch portion to support and laterally confine the wafer. The notch portion horizontally sweeps away from the wafer along a radius so that rotation adjusts lateral confinement of the wafer. A base section below the top section has a diameter greater than a diameter of the top section across the notch portion to help strengthen the pin and to allow perpendicular mounting. A bottom section has a diameter that is smaller than the diameter of the base section and provides a boss feature to mount the lift pin. The apparatus includes a process chamber where the wafer is processed, a chuck assembly on which the wafer is loaded. At least three wafer edge lift pins move the wafer up and down.
Abstract:
An apparatus for treating the surface of a microelectronic workpiece via impingement of the surface with at least one fluid and a method for operating the apparatus are described. In particular, the apparatus includes a treatment chamber defining an interior space to treat the microelectronic workpiece with at least one fluid within the treatment chamber, and a movable chuck that supports the workpiece within the treatment chamber. The apparatus further includes a workpiece translational drive system configured to translate the movable chuck between a workpiece load position and at least one processing position at which the workpiece is treated with the at least one fluid using at least one nozzle connected to at least one fluid supply, and a workpiece rotational drive system configured to rotate the microelectronic workpiece.
Abstract:
Methods are provided for processing a substrate in single substrate tool. In one embodiment, the method includes providing the substrate in the single substrate tool, applying a first processing fluid at a first temperature greater than 100° C. to a lower surface of the substrate to heat the substrate to approximately the first temperature, and applying a second processing fluid at a second temperature greater than 100° C. to an upper surface of the substrate.
Abstract:
A method of selectively removing silicon nitride from a substrate comprises providing a substrate having silicon nitride on a surface thereof; and dispensing phosphoric acid and sulfuric acid onto the surface of the substrate as a mixed acid liquid stream at a temperature greater than about 150° C. In this method, water is added to a liquid solution of the mixed acid liquid stream as or after the liquid solution of the mixed acid liquid stream passes through a nozzle.
Abstract:
A method for performing an oxide removal process is described. The method includes providing a substrate having an oxide layer, and preparing a patterned mask layer on the oxide layer, wherein the patterned mask layer has a pattern exposing at least a portion of the oxide layer. An HF treatment of the substrate is performed to transfer the pattern at least partially through the oxide layer, wherein the HF treatment exposes a silicon surface. Following the performing of the HF treatment, a surface property of the silicon surface is modified, wherein the modifying includes administering at least one oxidizing agent to contact the silicon surface to cause chemical oxidation of the silicon surface. And, following the modifying of the surface property, at least a portion of the patterned mask layer or a residual portion of the patterned mask layer is removed.
Abstract:
Apparatuses, and related methods, for processing a workpiece that include a particular barrier structure that can overlie and cover a workpiece. Apparatuses, and related methods, for processing a workpiece that include a particular movable member that can be positioned over and moved relative to a workpiece. Apparatuses, and related methods, for processing a workpiece that include a particular ceiling structure that can overlie a processing chamber. Nozzle devices, and related methods, that include a particular annular body. Nozzle devices, and related methods, that include a particular first, second, and third nozzle structure.
Abstract:
Strategies for tool designs and their uses wherein the tools can operate in either closed or open modes of operation. The tools easily transition between open and closed modes on demand. According to one general strategy, environmentally controlled pathway(s) couple the ambient to one or more process chambers. Air amplification capabilities upstream from the process chamber(s) allow substantial flows of air to be introduced into the process chamber(s) on demand. Alternatively, the fluid pathways are easily closed, such as by simple valve actuation, to block egress to the ambient through these pathways. Alternative flows of nonambient fluids can then be introduced into the process chamber(s) via pathways that are at least partially in common with the pathways used for ambient air introduction. In other strategies, gap(s) between moveable components are sealed at least with flowing gas curtains rather than by relying only upon direct physical contact for sealing.
Abstract:
A method of removing materials, and preferably photoresist, from a substrate comprises dispensing a liquid sulfuric acid composition comprising sulfuric acid and/or its desiccating species and precursors and having a water/sulfuric acid molar ratio of no greater than 5:1 onto an material coated substrate in an amount effective to substantially uniformly coat the material coated substrate. The substrate is preferably heated to a temperature of at least about 90° C., either before, during or after dispensing of the liquid sulfuric acid composition. After the substrate is at a temperature of at least about 90° C., the liquid sulfuric acid composition is exposed to water vapor in an amount effective to increase the temperature of the liquid sulfuric acid composition above the temperature of the liquid sulfuric acid composition prior to exposure to the water vapor. The substrate is then preferably rinsed to remove the material.
Abstract:
The present invention provides techniques to more accurately control the process performance of treatments in which microelectronic substrates are treated by pressurized fluids that are sprayed onto the substrates in a vacuum process chamber. control strategies are used that adjust mass flow rate responsive to pressure readings in order to hold the pressure of a pressurized feed constant. In these embodiments, the mass flow rate will tend to vary in order to maintain pressure uniformity.