Abstract:
In an automatic focus adjusting mechanism, a test sample having a patterned surface is mounted on a mount table, and an light beam passing through a slit formed in a field stop is applied to the patterned surface of the test sample. The light beam reflected from the test sample is split into two segment light beams. Focus adjusting aperture stops having respective apertures formed rhomboid are provided across the optical paths of the segment light beams. The amounts of the segment light beams passing through the rhomboid apertures are detected by light receiving units. Based on the difference between the detected light amounts, the position of the mount table is controlled by the focus adjusting unit.
Abstract:
A pattern inspection apparatus, including an optical image acquiring unit that acquires optical image data of a target plate to be inspected, the target plate being formed as a pattern. The pattern inspection apparatus also includes a design image data generating unit that generates design image data based on a design pattern serving as a base of pattern formation of the target plate. The pattern inspection apparatus further includes a comparing unit that inputs region image data generated based on information of a region pattern which is input to the pattern inspection apparatus. The information of the region pattern represents a predetermined region and is formed in the same format as that of information of the design pattern. The comparing unit compares the optical image data with the design image data based on the region image data.
Abstract:
A pattern inspection apparatus includes a magnification conversion unit configured to input first sample optical image data, and to convert the first sample optical image data to second sample optical image data which has a resolution N times that of the first sample optical image data, a low-pass filter configured to input first design image data which has a resolution N times that of the first sample optical image data and in which a gray level value corresponding to the first sample optical image data is defined, and to calculate second design image data by convolving the first design image data with a predetermined low-pass filtering function, an optical filter configured to calculate third design image data by convolving the second design image data with a predetermined optical model function, a coefficient acquisition unit configured to acquire a coefficient of the predetermined optical model function by performing a predetermined calculation by using the second sample optical image data and the third design image data, an optical image acquisition unit configured to acquire actual optical image data of an inspection target workpiece on which a pattern is formed, a reference image data generation unit configured to generate reference image data corresponding to the actual optical image data by using the coefficient, and a comparison unit configured to input the actual optical image data, and to compare the actual optical image data with the reference image data.
Abstract:
A sample inspection apparatus according to an aspect of the present invention includes a first SSD calculating unit which calculates the displacement amount from a preliminary alignment position of an optical image and a reference image to a position where the SSD of a pixel value of the optical image and a pixel value of the reference image is minimized, and a least-square method calculating unit which calculates the displacement amount by a least-square method from the preliminary alignment position of the optical image and the reference image, wherein the alignment position of the optical image and the reference image is corrected to a position where the smaller SSD of the minimum SSD obtained as the result of the calculation by the first SSD calculating unit and the SSD obtained as the result of the calculation by the determined by the least-square method calculating unit is obtained.
Abstract:
An image correction method having a small number of setting parameters achieved by integrating shift (alignment) in unit of a sub-pixel and image correction. A relationship between an inspection reference pattern image and a pattern image under test is identified, a mathematical expression model which fits a pixel error, expansion and contraction/distortion noise, and sensing noise of the image is constructed, and the model is simulated to generate an estimation model image.
Abstract:
A method of operating a laser light source including a wavelength conversion device in which two wavelength laser beams are input to a nonlinear crystal to output a sum frequency wavelength, according to one embodiment includes inputting only one wavelength laser beam of the two input wavelength laser beams to the nonlinear crystal; measuring scattered light intensity of the one wavelength laser beam by a light sensitive sensor installed on an optical axis of the sum frequency wavelength output beam; and judging a damage state of the nonlinear crystal based on a measurement value obtained of the intensity measurement by the light sensitive sensor.
Abstract:
A level detection apparatus includes an illumination slit in which a rectangular first opening which causes illumination light to pass is formed, an optical system configured to illuminate a target object surface by illumination light passing through the illumination slit and focuses reflected light from the target object surface, first and second detection slits which are arranged in front of and in back of a focal point and in each of which a second opening is formed such that a short side of a rectangle is shorter than a short side of a illumination slit image formed by the illumination slit and a long side of the rectangle is larger than a long side of the illumination slit image, first and second light amount sensors configured to detect amounts of light of the reflected lights passing through the first and second detection slits, and a calculating unit configured to calculate a level of the target object surface based on outputs from the first and second light amount sensors.
Abstract:
A reticle defect inspection apparatus that can carry out a defect inspection with high detection sensitivity are provided. The apparatus includes an optical system of transmitted illumination for irradiating one surface of a sample with a first inspection light, an optical system of reflected illumination for irradiating another surface of the sample with a second inspection light, and a detecting optical system that can simultaneously detect a transmitted light obtained by the first inspection light being passed through the sample and a reflected light obtained by the second inspection light being reflected by the sample. And the optical system of transmitted illumination includes a focusing lens driving mechanism for correcting a focal point shift of the transmitted light resulting from thickness of the sample.
Abstract:
A technique for correcting an image by using frequency division images and decomposition images corresponding in number to reference points is disclosed. An image correction apparatus includes an image divider which divides an inspection reference image into frequency regions to form frequency division images, a decomposition image generator for defining reference points at several locations within at least one frequency division image and for applying weighting with each reference point as a reference to thereby generate decomposition images corresponding in number to the reference points, a model parameter identifier for identifying a model parameter by using 2D linear prediction models of an image being tested, the decomposition images and a frequency division image which is out of the generation of decomposition images, and a model image generator for using the model parameter to generate a model image. An image inspection apparatus using the correction apparatus and an image correction method are also disclosed.
Abstract:
A pattern inspection apparatus includes a first unit configured to acquire an optical image of pattern, a second unit configured to generate a reference image to be compared, a third unit configured to calculate elements of a normal matrix for a least-squares method for calculating a displacement amount displaced from a preliminary alignment position, a forth unit configured to estimate a type of the reference image pattern, by using some of the elements of the normal matrix, a fifth unit configured to calculate the displacement amount based on the least-squares method, by using a normal matrix obtained by deleting predetermined elements depending upon the type of the pattern, a sixth unit configured to correct an alignment position between the optical image and the reference image to a position displaced by the displacement amount, and a seventh unit configured to compare the optical image and the reference image.