Abstract:
A light-emitting device comprising: an organic electroluminescence element that has a light-emitting surface and emits light from the light-emitting surface; and a structure layer that is provided directly or indirectly on the light-emitting surface of the organic electroluminescence element, wherein the structure layer has a concavo-convex structure on a surface of the structure layer, the surface being opposite to the organic electroluminescence element, the concavo-convex structure including a first streak array extending in a first direction that is parallel to the surface, a second streak array extending in a second direction that is parallel to the surface and intersects the first direction, and a third streak array extending in a third direction that is parallel to the surface and intersects the first direction and the second direction, the concavo-convex structure includes flat surface portions parallel to the light-emitting surface and an inclined surface portion that is inclined with respect to the light-emitting surface, and a projected area formed by projecting the inclined surface portion upon a plane parallel to the flat surface portions in a direction perpendicular to the flat surface portions is 0.1 times or less times a total area of the flat surface portions.
Abstract:
A surface light source device including an organic EL element of a double-side emission type and a light output surface structure layer provided on at least one surface of the organic EL element, wherein the light output surface structure layer includes a concavo-convex structure on a surface opposite to the organic electroluminescent element, the concavo-convex structure having flat surface portions parallel to the surface and an inclined surface portion tilted relative to the flat surface portions, and a projected area formed by projecting the inclined surface portion in a direction perpendicular to the flat surface portions onto a plane parallel to the flat surface portions is not more than 0.1 times a total area of the flat surface portions.
Abstract:
A surface light source device includes an organic electroluminescent element including a luminescent layer and a light-emitting surface structure layer disposed on one of the surfaces of the organic electroluminescent element. In the surface light source device, the light-emitting surface structure layer includes a concave-convex structure provided on a surface thereof on the side toward a device light-emitting surface, and the concave-convex structure includes a plurality of concave portions having oblique surfaces and flat portions disposed around the concave portions. The flat portions and/or the concave portions have a size difference in one or more of their width, height, depth, and spacing, the size difference being larger than the difference that causes interference of one or both of emitted light and reflected light.
Abstract:
The present invention is to realize a proper inner zone layout in a quadruple-layer disk.A test area is provided in the inner zone (inner circumference side area) in each of recording layers. If two test areas closer to the outer circumference, of four test areas, are defined as a first pair and two test areas closer to the inner circumference are defined as a second pair, the test areas of the first pair and the test areas of the second pair are so disposed as to be prevented from overlapping with each other in the layer direction. Two test areas of the first pair have the same consumption direction of the test area, and are so disposed that the areas to be used next hardly overlap with each other in the layer direction. Two test areas of the second pair have the same consumption direction of the test area opposite to the consumption direction of the test area in the first pair, and are so disposed that the areas to be used next hardly overlap with each other in the layer direction.
Abstract:
An organic electroluminescent light source device includes, in the following order from a light-emitting surface side, a first transparent electrode layer, a luminescent layer, a second transparent electrode layer, and a reflecting layer, wherein the reflecting layer includes a concavo-convex structure with an average inclination angle of 12 to 45°. An organic electroluminescent light source device includes, in the following order, a first transparent electrode layer, a luminescent layer, a second transparent electrode layer, a diffusing layer, and a reflecting-scattering layer, wherein the diffusing layer has a concavo-convex surface including a concavo-convex structure with an average inclination angle of 17 to 45°.
Abstract:
When radiating light onto a liquid crystal composition containing a photosensitive material, the alignment of liquid crystal molecules is adjusted by applying a voltage to the liquid crystal composition layer, to achieve substantially orderly alignment of the liquid crystal molecules, or the alignment of the liquid crystal molecules is made uniform by adjusting the structure of the liquid crystal display device, or any display defect is driven out of the display area. When radiating light to the liquid crystal composition containing the photosensitive material, the alignment of the liquid crystal molecules can be adjusted so as to achieve substantially orderly alignment of the liquid crystal molecules, and the liquid crystal display device can thus be driven stably.
Abstract:
A planar light source device is provided which has high light extraction efficiency and in which a change in color tone at different viewing angles is small. The planar light source device includes, on a light emitting surface, a concavo-convex structure layer made of a resin composition. In this planar light source device, the concavo-convex structure layer has a cone, pyramid, or prism shape, and the resin composition contains a transparent resin and particles. In particular, in the planar light source device, variations in any of x- and y-chromaticity coordinates in any directions in a hemisphere on the light emitting surface are within ±0.1, the diameter of the particle is 10 μm or less, and the amount of the particles is 1 to 40 wt % based on the total amount of the resin composition. In addition, the difference in refractive index between the particles and the transparent resin is 0.05 to 0.5.
Abstract:
A multilayer optical recording medium having three or more information recording layers is irradiated with a laser beam, and a first signal obtained from the reflected laser beam is subjected to a frequency filter. A second signal obtained by filtration through a high-pass filter is used to evaluate the characteristics of the multilayer optical recording medium. In this manner, even in a multilayer optical recording medium having three or more information recording layers, the influence of the variation of the thickness and material of the information recording layers and the influence of the variation of the thickness of a spacer layer can be clearly determined and evaluated.
Abstract:
In the liquid crystal display device and the method of manufacturing the same, the pixel electrodes 32 and the projection pattern 35 are formed on the TFT substrate 30 side, and surfaces of the pixel electrodes 32 and the projection pattern 35 are covered with the vertical alignment film 36. Also, the opposing electrode 44 and the projection pattern 45 are formed on the CF substrate 40 side, and surfaces of the opposing electrode 44 and the projection pattern 45 are covered with the vertical alignment film 46. Then, the TFT substrate 30 and the CF substrate 40 are arranged such that top end portions of the projection pattern 45 on the CF substrate 40 are brought into contact with the TFT substrate 30. Then, the liquid crystal 49 having the negative dielectric anisotropy is sealed between them. Accordingly, the step of scattering the spacers can be omitted, change in the cell thickness can be prevented, and the good display quality can be achieved.
Abstract:
The invention relates to a liquid crystal display used as a display section of an electronic apparatus and a method of manufacturing the same, and it is aimed at providing a liquid crystal display which can achieve high viewing angle characteristics and a method of manufacturing the same. A configuration is employed which includes a pair of substrates provided opposite to each other, a liquid crystal sealed between the pair of substrates, protrusions formed on at least one of the pair of substrates for regulating the alignment of the liquid crystal, and a plurality of pixel regions having both of a first area in which the protrusions are disposed at first intervals a2 and which has a first threshold voltage for driving of the liquid crystal and a second area in which the protrusions are disposed at second intervals a2 smaller than the first intervals and which has a second threshold voltage lower than the first threshold voltage.