Abstract:
A signal decision circuit includes: a first decision circuit configured to identify a voltage level of an input signal using an average level of an amplitude of the input signal as a first threshold level; a detection circuit configured to detect an average of an amplitude absolute level based on the average level of the amplitude; a second decision circuit configured to identify a voltage level of the input signal using a second threshold level obtained by adding the average of the amplitude absolute level to the average level of the amplitude; and a third decision circuit configured to identify a voltage level of the input signal using a third threshold level obtained by subtracting the average of the amplitude absolute level from the average level of the amplitude.
Abstract:
A drive circuit that drives a light emitting element coupled to a first output terminal of a differential circuit, the drive circuit includes: a dummy load provided at a second output terminal of the differential circuit, a resistor coupled between the first output terminal and the second output terminal, two transistors coupled to a voltage source and applying a current to the light emitting element and the dummy load, and a comparative amplifying circuit having a non-inverting input terminal coupled to a reference voltage, an inverting input terminal coupled to at least the first output terminal of the differential circuit via a resistor, and an output terminal coupled to gates of the two transistors.
Abstract:
A VCO generates a clock signal. A phase and frequency detector compares phases and frequencies of the clock signal generated by the VCO and an input signal. A charge pump adjusts a control voltage of the VCO based on an output of the phase and frequency detector. An identical digit detector generates a first signal by delaying a rising timing of the input signal by a first time, generates a second signal by delaying a falling timing of the input signal by a second time, detects succession of identical digits in the input signal based on the first signal and the second signal, and stops adjustment of the control voltage by the charge pump when the identical digits succeed by a predetermined number of identical digits or more.
Abstract:
A VCO generates a clock signal. A phase and frequency detector compares phases and frequencies of the clock signal generated by the VCO and an input signal. A charge pump adjusts a control voltage of the VCO based on an output of the phase and frequency detector. An identical digit detector generates a first signal by delaying a rising timing of the input signal by a first time, generates a second signal by delaying a falling timing of the input signal by a second time, detects succession of identical digits in the input signal based on the first signal and the second signal, and stops adjustment of the control voltage by the charge pump when the identical digits succeed by a predetermined number of identical digits or more.
Abstract:
An optical transmission system including a transmitting unit to transmit an optical main signal, a receiving unit to receive the optical main signal, and a transmission line through which the optical main signal is transmitted, the optical transmission system includes: an optical transmitter unit configured to be activated or inactivated based on a control signal so as to transmit the control signal, the optical transmitter being included in the transmitting; and an optical receiver configured to receive light with the activate state or the inactivate state of the optical transmitter the optical receiver being included in the receiving unit, wherein the receiving unit regenerates the control signal, based on a power of the received light.
Abstract:
In an optical receiver, a light receiving element receives the optical packet signals and converts the optical packet signals to electrical signals. A bias voltage supply section supplies bias voltage to the light receiving element. A monitoring section monitors an input level of each optical packet signal or each electrical signal and transmits a monitored value to the bias voltage supply section. In addition, the bias voltage supply section temporarily increases the bias voltage according to magnitude of the monitored value after an end of receiving of each optical packet signal.
Abstract:
A signal decision circuit includes: a first decision circuit configured to identify a voltage level of an input signal using an average level of an amplitude of the input signal as a first threshold level; a detection circuit configured to detect an average of an amplitude absolute level based on the average level of the amplitude; a second decision circuit configured to identify a voltage level of the input signal using a second threshold level obtained by adding the average of the amplitude absolute level to the average level of the amplitude; and a third decision circuit configured to identify a voltage level of the input signal using a third threshold level obtained by subtracting the average of the amplitude absolute level from the average level of the amplitude.
Abstract:
A drive circuit that drives a light emitting element coupled to a first output terminal of a differential circuit, the drive circuit includes: a dummy load provided at a second output terminal of the differential circuit, a resistor coupled between the first output terminal and the second output terminal, two transistors coupled to a voltage source and applying a current to the light emitting element and the dummy load, and a comparative amplifying circuit having a non-inverting input terminal coupled to a reference voltage, an inverting input terminal coupled to at least the first output terminal of the differential circuit via a resistor, and an output terminal coupled to gates of the two transistors.
Abstract:
An optical transmission apparatus includes an optical transmitter that includes a light emitting element and a driver circuit for the light emitting element, a temperature sensor that detects a temperature of the optical transmitter, and a controller that switches an operation mode of the optical transmitter from a normal mode to a low-power mode so as to reduce a heating effect to the light emitting element and allow an operation of the light emitting element to continue when the temperature detected by the temperature sensor is equal to or higher than a given temperature.
Abstract:
A receiver circuit includes a first amplifier circuit to differentially amplify differential input signals by a linear operation, a second amplifier circuit configured to differentially amplify output differential signals of the first amplifier circuit by a limiting operation, a feedback circuit, first and second resistors coupled between the feedback circuit and outputs of the first amplifier circuit, and third and fourth resistors coupled between the feedback circuit and outputs of the second amplifier circuit. The feedback circuit amplifies a positive-phase signal that is output from a positive-phase output node thereof coupled to the first and third resistors, and a negative-phase signal that is output from a negative-phase output node thereof coupled to the second and fourth resistors, and feeds back a feedback signal after amplification to the first amplifier circuit.