Abstract:
Systems, devices, methods, and computer readable media are provided for distributing data with multi-tiered encoding. For example, a system for communication of data streams to endpoints is provided that includes: encoders, each encoder configured to encode a data stream according to at least one encoding parameter; transmitting devices organized into groups based on at least one communication characteristic; each group of transmitting devices configured to receive encoded data from an associated one of the encoders; each transmitting device of the plurality of transmitting devices configured to transmit the encoded data to an associated one of the plurality of endpoints; and at least one controller configured to monitor communication characteristics of the plurality of transmitting devices and to adjust membership of the transmitting devices in the plurality of groups based on the monitored communication characteristics. The system may be further configured for synchronization, uni/bi-directional communication, etc.
Abstract:
Embodiments described herein relate to real-time streaming of large quantities of time critical data over multiple distinct networks from a communications device. More specifically, embodiments described herein may address challenges and problems of maintaining consistent data reception quality when faced with the anomalies of a moving sender that is sending data using a relatively unstable method. This may be achieved by converting single source data into multiple data streams, placing them in transport buffers and storing them for forwarding.
Abstract:
Systems, devices, methods, and computer readable media are provided for distributing data with multi-tiered encoding. For example, a system for communication of data streams to endpoints is provided that includes: encoders, each encoder configured to encode a data stream according to at least one encoding parameter; transmitting devices organized into groups based on at least one communication characteristic; each group of transmitting devices configured to receive encoded data from an associated one of the encoders; each transmitting device of the plurality of transmitting devices configured to transmit the encoded data to an associated one of the plurality of endpoints; and at least one controller configured to monitor communication characteristics of the plurality of transmitting devices and to adjust membership of the transmitting devices in the plurality of groups based on the monitored communication characteristics. The system may be further configured for synchronization, uni/bi-directional communication, etc.
Abstract:
A system and method for transmission of a video stream are provided. The system may include: an encoder adapted to generate a video stream comprising a plurality of encoded frames, encoded according to at least one encoding parameter; a comparator in communication with the encoder, the comparator adapted to compare encoded frames of the plurality of encoded frames with input frames to determine a fitness metric reflective of visual quality of the encoded frames; and a controller in communication with the comparator, the controller adapted to adjust the at least one encoding parameter based on the fitness metric.
Abstract:
There is disclosed a system and method for transmission of multiple data streams from a mobile device to a network. In an embodiment, the system includes a multipath wireless router configured to provide a plurality of network connections including cellular, satellite, or wired Ethernet. An encoding module provided on the mobile device is configured to encode high volume data (e.g. high definition video) recorded by the mobile device into multiple data streams in dependence on the number of network connections available for transmission via the multipath wireless router. The encoding module provided on the mobile device transmits the multiple data streams to the wireless router using Wi-Fi to provide a local, short-hop, high capacity network connection. The plurality of network connections available via the multipath wireless router provides the necessary capacity and reliability to transmit a high volume of data, such as high definition video, virtually live.
Abstract:
A network gateway is provided for routing data flows across a plurality of network connections, the network gateway including a plurality of network interfaces for transmitting data over the plurality of network connections, the plurality of network interfaces including a first network interface; at least one processor configured for: transmitting a sequential burst of packets across the first network interface; based on timestamps recorded when packets in the sequential burst of packets are received at a receiving node, and the size of the packets, generating a bandwidth of the first network interface; and routing a data flow of sequential packets across the plurality of network connections based on the generated bandwidth of the first network interface.
Abstract:
Systems and methods for real-time transmission of data streams are disclosed. A controller receives data representing selected stream parameters from a browser residing on a computing device. The controller transmits the received data to a video transmitting device. A transcoder receives a first data stream generated according to the selected stream parameters from the video transmitting device. The transcoder generates a second data stream from the first data stream, the second data stream formatted for browser display; and then transmits the second data stream to the browser. A user may remotely control the video transmitting device using the browser. A user may view data streams from multiple video transmitting devices using the browser.
Abstract:
Devices, systems, and methods are described that employ actionable intelligence in an emergency or other situation requiring immediate situational awareness, based on multiple types of input. Actionable intelligence is an output providing guidance or information that can be acted on to resolve an incident. The device can be configured to request re-allocation of resources based on incident severity, and bonding technology is used to provide improved speed and reliability in networking communications following a triggering event.
Abstract:
There is disclosed a system and method for transmission of multiple data streams from a mobile device to a network. In an embodiment, the system includes a multipath wireless router configured to provide a plurality of network connections including cellular, satellite, or wired Ethernet. An encoding module provided on the mobile device is configured to encode high volume data (e.g. high definition video) recorded by the mobile device into multiple data streams in dependence on the number of network connections available for transmission via the multipath wireless router. The encoding module provided on the mobile device transmits the multiple data streams to the wireless router using Wi-Fi to provide a local, short-hop, high capacity network connection. The plurality of network connections available via the multipath wireless router provides the necessary capacity and reliability to transmit a high volume of data, such as high definition video, virtually live.
Abstract:
A computer implemented system is provided for improving performance of transmission in real-time or near real-time applications from at least one transmitter unit to at least one receiver unit. The system includes an intelligent data connection manager utility that generates or accesses performance data for two or more data connections associated with the two or more communication networks, and based on the current performance data determining current network transmission characteristics associated the two or more data connections, and bonds the two or more data connections based on: a predetermined system latency requirement; and dynamically allocating different functions associated with data transmission between the two or more data connections based on their respective current network transmission characteristics. The data connection manager utility then manages dynamically the transmission of relatively large data sets across the two or more bonded or aggregated data connections in a way that meets the system latency requirement and improves performance in regards to other network performance criteria (including data transfer rate, errors, and/or packet loss). Related computer implemented methods are also provided.