Abstract:
A battery fabrication method includes forming on a substrate, at least a portion of a battery cell having a plurality of battery component films that include an underlying film with an overlying metal-containing film. A beam incident area of the metal-containing film is locally heated by directing onto the metal-containing film, an energy beam maintained at a fluence of at least about 800 J/cm2. The metal-containing film is heated to a temperature that is at least 100° C. higher than the temperature attained by the underlying film.
Abstract translation:电池制造方法包括在基板上形成具有多个电池组分膜的电池单元的至少一部分,所述多个电池组分膜包括具有覆盖的含金属膜的下面的膜。 含金属膜的光束入射区域通过引导到含金属膜,局部加热,能量束保持至少约800J / cm 2的通量。 将含金属膜加热至比基底膜达到的温度高至少100℃的温度。
Abstract:
A method of depositing lithium metal oxide on a battery substrate in a sputtering chamber comprising a substrate support, first and second sputtering targets each comprising lithium metal oxide, and first and second electrodes about the backside surfaces of the first and second sputtering targets respectively. In the method, a substrate is placed on the substrate support, sputtering gas maintained at a pressure and energized by applying an alternating voltage of AC power to the first and second electrodes so that each electrode is alternately either an anode or a cathode. The alternating voltage can be applied within a frequency range while also applying a time varying magnetic field about each of the surfaces of the first and second targets.
Abstract:
A lithium battery comprises a battery support and a cathode current collector directly on and in contact with the battery support. The cathode current collector is composed of molybdenum and comprises a thickness of at least about 0.01 microns. A cathode is on the cathode current collector, an electrolyte on the cathode, and at least one of an anode or anode current collector on the electrolyte.
Abstract:
A battery comprises a substrate comprising a first surface comprising a first battery cell having a first non-contact surface, a pliable dielectric abutting the first non-contact surface, the pliable dielectric comprising a peripheral edge, and a first cap about the pliable dielectric.
Abstract:
A thin film battery manufacturing method is provided for deposition of lithium metal oxide films onto a battery substrate. The films are deposited in a sputtering chamber having a plurality of sputtering targets and magnetrons. The sputtering gas is energized by applying a voltage bias between a pair of the sputtering targets at a frequency of between about 10 and about 100 kHz. The method can provide a deposition rate of lithium cobalt oxide of between about 0.2 and about 4 microns/hr with improved film quality.
Abstract:
A method of fabricating a battery comprises selecting a battery substrate having cleavage planes, and cutting the battery substrate with pulsed laser bursts from a pulsed laser beam to control or limit fracture along the cleavage planes. The pulsed laser beam was also found to work well on thin substrates which are sized less than 100 microns. Before or after the cutting step, a plurality of battery component films can be deposited on the battery substrate. The battery component films include at least a pair of electrodes about an electrolyte which cooperate to form a battery.
Abstract:
A battery comprises at least one battery cell on a support, the battery cell comprising (i) an electrolyte between a plurality of electrodes, and (ii) a top surface. A protective casing having a barrier layer contacts the top surface of the battery cell, the barrier layer comprising (i) an oxygen permeability or nitrogen permeability that is less than 80 cm3*mm/(m2*day), (ii) a carbon dioxide permeability that is less than 1 cm3*mm/(m2*day), and (iii) a water permeability that is less than 4 g*mm/(m2*day). A conformal coating covers the barrier layer, the conformal coating having a viscosity that is less than about 100,000 Pa-s at about 150° C. A cap is adhered to the conformal coating.
Abstract:
A lithium battery comprises at least one battery cell on a support, the battery cell comprising a plurality of electrodes about an electrolyte. A protective casing comprises a cover spaced apart from and covering the battery cell to form a gap therebetween with a polymer filling the gap. In one version, the polymer comprises polyvinylidene chloride polymer. First and second terminals extend out of the protective casing, the first and second terminals being connected to different electrodes of the battery cell.
Abstract:
A solid-state, mismatched battery comprises a first battery cell having a first internal resistance, and a second battery cell having a second internal resistance, the second internal resistance being a predefined resistance that is less than the first internal resistance. One or more of electrical connectors electrically couple the first and second battery cells. A casing encloses the first and second battery cells. A pair of terminals is electrically coupled to the first and second battery cells to output electrical power to an external load.
Abstract:
A plasma chamber for depositing a battery component material on a partially fabricated battery cell comprising a battery component layer containing charge-carrying metal species and having an exposed surface. The chamber comprises a support carrier to hold a battery support comprising the partially fabricated battery cell. A mesh screen is positioned at a preset distance from the support carrier, the mesh screen having a plurality of mesh openings. An exhaust maintains a pressure of the process gas in the plasma chamber. A plasma power source is capable of applying an electrical power to the process gas to generate a plasma from the process gas for plasma deposition, during which the mesh screen is capable of reducing migration of the charge-carrying metal species across the battery component layer.