一种基于动态前缀提示信息的事件抽取方法

    公开(公告)号:CN115017316B

    公开(公告)日:2025-04-08

    申请号:CN202210669824.2

    申请日:2022-06-14

    Inventor: 黄河燕 刘啸

    Abstract: 本发明涉及一种基于动态前缀提示信息的事件抽取方法,属于计算机自然语言处理技术领域。本方法根据输入文本结合所有可能的事件类型,动态构造可调整的稠密的前缀信息,由此增强前缀信息的表现力,提高了数据的利用率。同时,利用相关性分类器将不包含事件实例的文本排除,减少了不相关信息的干扰。本方法克服了现有的基于生成的事件抽取方法中人工构造离散提示文本的次优性,事件类型信息与文本上下文相隔绝等技术缺陷。本方法在精确率、召回率、F1值评测指标等方面都有显著提升。

    一种基于动态前缀提示信息的事件抽取方法

    公开(公告)号:CN115017316A

    公开(公告)日:2022-09-06

    申请号:CN202210669824.2

    申请日:2022-06-14

    Inventor: 黄河燕 刘啸

    Abstract: 本发明涉及一种基于动态前缀提示信息的事件抽取方法,属于计算机自然语言处理技术领域。本方法根据输入文本结合所有可能的事件类型,动态构造可调整的稠密的前缀信息,由此增强前缀信息的表现力,提高了数据的利用率。同时,利用相关性分类器将不包含事件实例的文本排除,减少了不相关信息的干扰。本方法克服了现有的基于生成的事件抽取方法中人工构造离散提示文本的次优性,事件类型信息与文本上下文相隔绝等技术缺陷。本方法在精确率、召回率、F1值评测指标等方面都有显著提升。

    一种利用大语言模型增强的生成式跨语言事件抽取方法

    公开(公告)号:CN116956922A

    公开(公告)日:2023-10-27

    申请号:CN202310909646.0

    申请日:2023-07-24

    Abstract: 本发明涉及一种利用大语言模型增强的生成式跨语言事件抽取方法,属于计算机人工智能和自然语言处理技术领域。本方法首先使用大语言模型,将各语言的文本信息进行事件预抽取,得到各种语言的大模型事件抽取结果,并将其解析为可用的文本提示为模型训练做准备,然后构建训练所需的文本提示,将输入的文本提示向量化表示,最后使用得到的隐藏层计算二元损失,解码隐藏层向量,将解码损失和二元损失加权相加反向传播,并将向量转化为文本。本方法有效解决了模型跨语言事件抽取困难的问题,提升了知识提示的正面效果,做到了知识提示程度的可控管理,显著增强了生成式跨语言事件的抽取性能。

    一种基于图循环神经网络的事件事实性检测方法

    公开(公告)号:CN112686040B

    公开(公告)日:2022-08-23

    申请号:CN202011626720.0

    申请日:2020-12-31

    Inventor: 黄河燕 刘啸

    Abstract: 本发明公开了一种基于图循环神经网络的事件事实性检测方法,属于信息抽取技术和计算机自然语言处理技术领域。本发明通过训练一个图循环神经网络事件事实性检测器,有效利用依存树中的信息,将其中包含丰富信息的边类别标签和方向信息与神经网络进行结合,同时,利用参数共享的性质缓解过拟合的风险。本方法,克服了传统方法没有将依存树中包含丰富信息的边类别标签和方向信息结合进神经网络中的缺陷,提高信息利用率。通过利用参数共享机制,规避了堆叠图网络层数来建模依存树中的多跳路径时因参数线性增长而导致的容易过拟合的风险。

    一种基于图循环神经网络的事件事实性检测方法

    公开(公告)号:CN112686040A

    公开(公告)日:2021-04-20

    申请号:CN202011626720.0

    申请日:2020-12-31

    Inventor: 黄河燕 刘啸

    Abstract: 本发明公开了一种基于图循环神经网络的事件事实性检测方法,属于信息抽取技术和计算机自然语言处理技术领域。本发明通过训练一个图循环神经网络事件事实性检测器,有效利用依存树中的信息,将其中包含丰富信息的边类别标签和方向信息与神经网络进行结合,同时,利用参数共享的性质缓解过拟合的风险。本方法,克服了传统方法没有将依存树中包含丰富信息的边类别标签和方向信息结合进神经网络中的缺陷,提高信息利用率。通过利用参数共享机制,规避了堆叠图网络层数来建模依存树中的多跳路径时因参数线性增长而导致的容易过拟合的风险。

Patent Agency Ranking