-
公开(公告)号:CN117481606B
公开(公告)日:2024-05-14
申请号:CN202311498055.5
申请日:2023-11-13
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: A61B5/00 , A61B5/346 , G06F18/241 , G06F18/10 , G06F18/213 , G06F18/22 , G06N3/048 , G06N3/0464
Abstract: 一种基于改进孪生网络的小样本心电信号分类方法,涉及心电信号分类技术领域,通过构建CMP模块作为孪生网络的子网络,将提取局部特征和全局特征相结合,能够更好的分析波峰的位置、振幅和偏移量等信息,使得转换后的特征向量变得更加鲁棒,从而提高小样本心电信号分类的准确率和稳定性。
-
公开(公告)号:CN117315798B
公开(公告)日:2024-03-12
申请号:CN202311546911.X
申请日:2023-11-20
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院
IPC: G06V40/40 , G06V40/16 , G06V20/40 , G06V10/774 , G06V10/82 , G06N3/0464
Abstract: 一种基于身份脸型特征的深度伪造检测方法,涉及深度伪造检测技术领域,引入身份特征与3D人脸形状特征相结合,设计了脸型一致性自注意力模块、身份引导脸型一致性注意力模块,挖掘其中的身份脸型不一致特征,根据不同检测人脸的参考人脸信息,具有更强的针对性。额外利用了待检测人脸的参考人脸辅助检测,具有更强的针对性。利用身份特征和形状特征实现更好的泛化检测性能,提高深度伪造检测性能和精准度。
-
公开(公告)号:CN117653137A
公开(公告)日:2024-03-08
申请号:CN202311523454.2
申请日:2023-11-16
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
IPC: A61B5/346
Abstract: 一种基于对比学习和多尺度双维注意力机制的心电分类方法,涉及心电信号分类技术领域,设计了MFE‑ResNet网络模型以解决未充分建模特征在通道和时间上的相关性问题。该模型包括并行卷积模块、Batch_Norm层、Relu激活函数层、并行的残差和空洞卷积模块、多尺度双维注意力模块以及融合模块。能够有效提取心电信号的特征表示,弥补传统模型的不足,并提高特征捕捉能力。
-
公开(公告)号:CN117357129A
公开(公告)日:2024-01-09
申请号:CN202311499058.0
申请日:2023-11-13
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院
Abstract: 一种针对可穿戴式设备的心电图QRS波形检测方法,涉及心电信号处理技术领域,使用了一个新的心电信号波形检测网络S2TE_Net,该网络使用了时空特征提取模块和激励挤压模块相结合,以实现对QRS波形的准确检测。在时空特征提取模块中,使用了卷积神经网络(CNN)和双向长短期记忆网络(Bi‑LSTM)的结合体。CNN可以捕捉时间序列数据中的空间特征,Bi‑LSTM可以捕获ECG信号中存在的时间特征并平滑高频噪声,从而在可穿戴式设备中获得更准确的QRS波形检测结果。
-
公开(公告)号:CN115357785B
公开(公告)日:2023-06-30
申请号:CN202210936398.4
申请日:2022-08-05
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院 , 齐鲁工业大学
IPC: G06F16/9535 , G06F16/958 , G06F16/335 , G06F40/289 , G06F40/30
Abstract: 一种基于语义交互和局部激活的企业资讯推荐方法,通过SIN企业资讯编码器可以在标题和内容之间进行单词级语义交互,缓解了独立编码标题和内容时的语义偏差,有效增强了企业资讯表示。通过LAU用户编码器更加符合用户的真实的行为习惯,可以分区域处理用户点击历史,以细粒度的方式有效捕获用户的各种潜在兴趣。提出的LAU用户编码器可以利用候选企业资讯激活相关的关键性潜在兴趣,并结合注意力机制使其保留到了最终交互阶段,这有效增强了用户兴趣表示;上述三点的成功使得我们的方法有效提高了企业资讯推荐的准确性。
-
公开(公告)号:CN110555060B
公开(公告)日:2023-05-02
申请号:CN201910849336.8
申请日:2019-09-09
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/2458 , G06F18/214 , G06N3/0464 , G06N3/0442
Abstract: 本发明属于图像分类和迁移学习技术领域,公开了一种基于成对样本匹配的迁移学习方法,实现了对基于不同域的样本内在关系的挖掘。具体包含以下步骤:(1)数据预处理,(2)基于迁移学习的双链模型构建,(3)实例归一化和批量归一化,(4)计算对比损失和最大均值距离损失。本发明的优点是通过结合实例归一化和批归一化同时进行学习,充分挖掘不同图像的风格和语义关联特性,实现在源域辅助下对少量目标域样本的高效识别。
-
公开(公告)号:CN110543581B
公开(公告)日:2023-04-04
申请号:CN201910848660.8
申请日:2019-09-09
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/55 , G06F16/583 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 该发明属于计算机视觉及深度学习领域,针对当前基于视图的深度学习方法不能捕获三维模型全面的空间信息的缺点,基于非局部图卷积网络的多视图三维模型检索方法挖掘融合多视图的高响应特征,从而得到单一紧凑的高辨别性模型描述符。其优越性能在三维模型检索中得到验证。该发明具体包含以下步骤:(1)获取模型的多视角图像,(2)多视角图像预处理,(3)设计非局部图卷积网络,(4)非局部图卷积网络训练,(5)提取模型深度特征,(6)三维模型的检索匹配。
-
公开(公告)号:CN115357783A
公开(公告)日:2022-11-18
申请号:CN202210918943.7
申请日:2022-08-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院 , 齐鲁工业大学
IPC: G06F16/9535 , G06F16/958 , G06F16/335 , G06F40/289 , G06F40/30
Abstract: 一种基于结构化多兴趣协同的企业服务快讯推荐方法,通过附加选择器以增强快讯的特征,有效增强了最终的企业服务快讯表示;本发明提出的用户兴趣表示学习方法通过构建用户兴趣结构无向图,利用图注意力网络可以一种显示的方式结构化编码用户的多种潜在兴趣,这可以提取更加精确的用户兴趣表示;本发明提出的用户兴趣表示学习方法充分考虑了用户多种潜在兴趣之间的相互作用,利用自注意力网络模拟兴趣之间的作用关系有效增强了用户兴趣表示;本发明得益于良好的企业服务快讯表示学习方法和用户兴趣表示学习方法,有效提高了企业服务快讯推荐的准确性。
-
公开(公告)号:CN115329211A
公开(公告)日:2022-11-11
申请号:CN202210918860.8
申请日:2022-08-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院 , 齐鲁工业大学
IPC: G06F16/9536 , G06F16/958 , G06N3/04 , G06N3/08 , G06Q50/00
Abstract: 一种基于自监督学习和图神经网络的个性化兴趣推荐方法,使用自监督的图对比学习的方法预训练兴趣点特征表示向量,深度学习兴趣点之间的流行度访问行为模式,训练图编码器模型,使兴趣点特征向量融合空间关联性和交互行为关联性。同时在下游推荐任务中将目标用户个人的兴趣点交互图通过预训练中训练好的图编码器模型学习用户个人的长期行为模式作为长期兴趣,以达到个性化的目的。大大提高了模型的泛化能力和推荐召回率,实现根据兴趣个性化解决用户出行需求的目的。
-
公开(公告)号:CN114780866B
公开(公告)日:2022-11-01
申请号:CN202210376638.X
申请日:2022-04-11
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC: G06F16/9536 , G06F16/9537 , G06N3/04 , G06N3/08
Abstract: 一种基于时空上下文兴趣学习模型的个性化智能推荐方法,使用图神经网络建模用户历史签到行为序列,通过创新图消息传播与聚合的拉普拉斯范数,融合兴趣点之间的交互关联性及空间关联性来获取兴趣点的高阶特征表示。同时编码日模式创新性的获取到了用户的长期兴趣,并使用长短期记忆网络捕获用户短期行为模式作为短期兴趣,通过层间注意力获取长短期兴趣。在此基础上进行候选兴趣点的概率计算作为推荐依据。通过图卷积的方式提高了兴趣点的特征提取效果,充分利用时空上下文挖掘用户的兴趣,以此进行推荐提高准确率,解决用户的出行需求。
-
-
-
-
-
-
-
-
-