一种视频分类方法及装置
    81.
    发明授权

    公开(公告)号:CN109902202B

    公开(公告)日:2021-06-22

    申请号:CN201910015462.3

    申请日:2019-01-08

    Abstract: 本发明提供一种视频分类方法及装置,用以解决相关技术中基于显著性引导的分类模型的分类性能较低的问题。该方法包括:提取待分类视频的关键帧;将所述关键帧输入预先根据训练集训练得到的双路神经网络模型,得到所述视频的分类结果以及所述视频的显著图,所述训练集中包括按照视频类型进行分类的视频以及视频显著图,所述双路神经网络模型包括一路用于对所述视频进行分类的第一子神经网络以及一路用于确定所述视频的显著图的第二子神经网络;将得到的所述显著图中置信度高于第一阈值的显著图加入所述训练集;使用所述训练集中的视频显著图重新训练所述第二子神经网络,得到更新后的双路神经网络模型。本发明有效提高了视频分类的性能。

    基于深层神经网络翻译模型的解码方法

    公开(公告)号:CN108647214B

    公开(公告)日:2020-06-30

    申请号:CN201810270468.0

    申请日:2018-03-29

    Abstract: 本发明涉及语言处理领域,提出了一种基于深层神经网络翻译模型的解码方法,旨在解决机器翻译模型中模型训练复杂度高、训练难度大解码速度慢等问题。该方法的具体实施方式包括:对待翻译语句进行分词处理,得到源语言词汇;步骤2,使用自动对齐工具对预设的翻译模型词汇表中的语料进行词对齐,得到与所述源语言词汇对齐的目标语言单词;步骤3,基于步骤2所得到的目标语言单词,确定出所述待翻译语句的目标端动态词汇表,根据预先构建的翻译模型,使用柱搜索方法解码出的语句作为所述翻译模型的输出;其中,所述翻译模型为基于门限残差机制和平行注意力机制的深层神经网络。本发明提升了模型翻译质量,提高了模型解码速度。

    基于学习模型的谣言检测方法、系统及存储介质

    公开(公告)号:CN109471932A

    公开(公告)日:2019-03-15

    申请号:CN201811415780.0

    申请日:2018-11-26

    Abstract: 本发明公开了一种基于学习模型的谣言检测方法、系统及存储介质,其中检测方法包括:构建新闻语料库;构建博文语料库;对新闻语料库中的数据进行模型训练,获得第一分类器模型;对博文语料库中的数据进行特征提取,获得训练特征,利用训练特征进行模型训练获得第二分类器模型;利用第一分类器模型和第二分类器模型对社交平台中的博文数据进行谣言检测。本发明通过对新闻数据中的谣言和非谣言数据进行采集构建新闻语料库,再进行模型训练获得第一训练模型;再对社交平台中的谣言和非谣言数据进行采集构建博文语料库,再进行模型训练获得第二训练模型,最后利用两个训练模型对社交平台中的数据进行谣言检测,使最终的检测结果更加准确可靠。

    视频理解方法
    86.
    发明公开

    公开(公告)号:CN108921087A

    公开(公告)日:2018-11-30

    申请号:CN201810699566.6

    申请日:2018-06-29

    Abstract: 本发明涉及计算机视觉技术领域,具体涉及一种视频理解方法,旨在解决如何有效提取视频的密集帧特征和长期时空特征的技术问题。为此目的,本发明提供的视频理解方法首先利用残差网络获取目标视频的视频帧组,然后利用时序关系网络并根据多个视频帧组生成视频的时序关系特征,最后根据时序关系特征预测目标视频的视频行为类别。其中,视频帧组包括两个有序视频帧,每个有序视频帧均包括多个按照时间顺序依次排列的视频帧。基于上述步骤,能够有效获取到目标视频的密集帧特征和长期时空特征,进而可以快速且准确地预测出目标视频的视频行为类别。

Patent Agency Ranking