-
公开(公告)号:CN116684481A
公开(公告)日:2023-09-01
申请号:CN202310959221.0
申请日:2023-08-01
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L67/55 , H04L67/306
Abstract: 本申请涉及一种推送信息同质化的处理方法、装置、电子设备及存储介质,所述方法,通过获取当前用户信息,判断基于当前用户信息生成的第一推送信息集合是否属于同质化类型;并在第一推送信息集合属于同质化类型的情况下,确定第一推送信息集合的推送成因类型,以此基于推送成因类型确定调整策略,基于调整策略调整第一推送信息集合中的推送信息,以生成目标推送信息集合。由此,通过第一推送信息集合是否属于同质化类型,来判断当前是否存在同质化问题,并且在存在同质化问题的情况下,可以利用调整策略调整推送信息确定出目标推送信息集合,克服第一推送信息所存在的同质化问题,实现了为用户提供多样性推送内容的效果。
-
公开(公告)号:CN116644229A
公开(公告)日:2023-08-25
申请号:CN202310545163.7
申请日:2023-05-15
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F18/214 , G06F18/243
Abstract: 本申请涉及一种推荐信息过度泛娱乐化预测方法、装置及服务器,方法应用于服务器,包括:获取用户个性化推荐场景下的待预测时刻的实时行为数据和第一历史行为数据;对待预测时刻的实时行为数据和第一历史行为数据进行特征提取,获得待输入特征;将待输入特征输入推荐信息过度泛娱乐化预测模型;获取推荐信息过度泛娱乐化预测模型的输出结果,输出结果表征用户待预测时刻是否发生推荐信息过度泛娱乐化。通过上述方式,解决了现在对过度泛娱乐化的信息推荐的预测角度的研究还存在空白的问题。
-
公开(公告)号:CN116611433A
公开(公告)日:2023-08-18
申请号:CN202310478295.2
申请日:2023-04-28
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/289 , G06Q10/0639 , G06F18/24 , G06N3/0464 , G06N20/00
Abstract: 本发明实施例涉及一种情感识别方法及系统,所述方法包括:获取目标文本对应的初始数据,所述初始数据是由所述目标文本经过预处理得到的;设定所述初始数据的细粒度规则,得到所述初始数据对应不同长度的类别文本;根据所述细粒度规则和所述类别文本,确定不同长度的所述类别文本对应的不同类别的情感识别模型;将所述类别文本输入到对应的所述情感识别模型中进行识别处理,得到所述目标文本的情感识别结果。通过对获得到初始数据按照设定的细粒度规则进行设定分类,确定情感识别模型,通过识别处理得到情感识别结果,由此,可以更加准确地表达和识别用户的情感倾向和理解用户情感,更好地支持情感分析应用,更好地支持舆情分析,实现对短文本的情感识别处理的技术效果。
-
公开(公告)号:CN116578942A
公开(公告)日:2023-08-11
申请号:CN202310853781.8
申请日:2023-07-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/2433 , G06F17/18 , G06F18/214 , G06Q10/10
Abstract: 本申请实施例涉及一种榜单异常的处理方法及装置,所述方法包括:获取目标榜单信息,并按照设定的检测方法对目标榜单信息进行异常检测,得到对应的异常检测结果;将异常检测结果对应的异常样本信息输入到预先训练好的预估模型中进行评估处理,输出异常样本信息对应的在榜时长;根据在榜时长确定反馈调节策略;基于反馈调节策略执行对异常在榜信息的处理。通过创建榜单异常的检测工具,检测出每个榜单信息中存在的异常样本信息,通过设定的反馈调节策略对异常样本信息进行处理,达到治理异常榜单信息的目的;由此,可以实现利用机器审核结合人工审核,形成一套实时报警、反馈、调节的热榜治理机制,维护热榜的公平和稳定的技术效果。
-
公开(公告)号:CN115292571B
公开(公告)日:2023-03-28
申请号:CN202210942548.2
申请日:2022-08-08
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/951 , G06F16/215 , G06F8/61 , G06F9/445 , G06F17/18 , G06V10/74 , G06V10/764
Abstract: 本发明公开了一种App数据采集方法及系统,所述方法包括对群控平台中所有应用软件进行遍历采集,得到群控平台应用软件信息;对群控平台应用软件中的内容进行深度优先遍历采集,并将获取的内容进行整合;对整合后的采集内容进行判断清洗,获得最终应用软件通用内容。通过采用改进的深度优先遍历算法完成采集工作,保证了采集数据的全面性,同时提高了采集效率。
-
公开(公告)号:CN113343219B
公开(公告)日:2023-03-07
申请号:CN202110606530.0
申请日:2021-05-31
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种自动高效的高风险移动应用程序检测方法,包括S1、获取待测App的SDK列表和权限列表,转化为向量形式,得到列表向量;计算待测App与已知的高风险App之间的相似度,判定为潜在风险App;S2、动态分析进一步判定是否为高风险App,若判定为“是”,将其标记为高风险App;S3、人工审核判定是否是高风险App,若“是”,添加至高风险App库,标记为高风险App。本发明采用以静态分析、动态分析为主,辅助以人工审核的方式,避免了人工审核存在的效率低、成本高、准确率低等问题,实现了高风险App得自动高效识别。
-
公开(公告)号:CN110704186B
公开(公告)日:2022-05-24
申请号:CN201910908595.3
申请日:2019-09-25
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提出了一种基于混合计算资源的分布式计算系统,用以合理分配资源,满足计算任务多样性的需求,所述系统包括计算引擎层和资源调度层,其中:所述计算引擎层由多个构建在同一个Spark计算引擎上的深度学习框架组成,针对所述计算引擎层统一封装各个深度学习框架的访问接口;所述资源调度层包括多种异构计算资源,所述异构计算资源包括以下至少一项:CPU、GPU和FPGA;在所述资源调度层,根据待处理任务的任务类型划分不同的任务队列,根据不同物理机搭载的计算资源类型划分不同的逻辑集群,根据待处理任务的任务类,将任务队列中的任务分配到对应的逻辑集群中执行。
-
公开(公告)号:CN113536077A
公开(公告)日:2021-10-22
申请号:CN202110606596.X
申请日:2021-05-31
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/906 , G06F16/953 , G06F16/901 , G06N20/00
Abstract: 本发明公开了一种移动APP特定事件内容检测方法,涉及网络信息安全和自然语言处理交叉技术领域。首先获取互联网上特定事件的若干内容作为原始语料,从中抽取原始关键词;针对原始语料构建关键词关系图,并对关键词关系图进行聚类,得到若干簇;对同一簇中的关键词进行量化和排序,得到最能够表达该事件的特征关键词;将特征关键词输入到APP搜索框中进行自动化检索,保存结果;使用机器学习算法对保存结果进行分析,实现了移动APP中特定事件的自动、高效检测分析。本发明以很低的搜索成本获得了不同移动应用针对特定事件的舆论观点和舆论走向信息。本发明还公开了一种移动APP特定事件内容检测装置。
-
公开(公告)号:CN112073584B
公开(公告)日:2021-05-18
申请号:CN202010941675.1
申请日:2019-08-27
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F21/57 , H04M1/72406 , H04M1/72454
Abstract: 本发明公开了一种APP收集用户个人敏感信息的风险评估方法,通过对APP进行静态分析以及动态分析,得出权限评分、调用函数评分、SDK评分、流量包参数评分和域名评分,再进行加权求和,得出被评估APP的最终评分,根据评估矩阵得出被评估APP的风险评级;根据风险评级反向维护SDK风险权重库和域名风险权重库,对SDK或域名进行风险权重的修正。本发明的APP收集用户个人敏感信息的风险评估方法包含用户输入的用户个人敏感信息、非用户输入的潜在用户个人敏感信息,对APP收集用户个人敏感信息的风险程度进行量化,更全面的涵盖了多种敏感信息点,细化了APP收集用户个人敏感信息的风险大小,能大批量的评估APP收集用户个人敏感信息的风险程度。
-
公开(公告)号:CN112258377A
公开(公告)日:2021-01-22
申请号:CN202011088661.6
申请日:2020-10-13
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种鲁棒二值神经网络的构建方法及设备。鲁棒二值神经网络的构建方法,包括:对训练数据进行二值化处理;基于二值化处理后的训练数据,对预设二值神经网络进行训练;对完成训练的预设二值神经网络进行纠错编码。采用本发明,通过对训练数据进行二值化处理,可以将内存占用降低为原有的浮点型权值的1/32;同时,对训练好的二值神经网络进行纠错编码,使得编码后二元神经网络具有抵抗檫除或者错误的噪音干扰,所以编码后的二元神经网络具有很好的鲁棒性。
-
-
-
-
-
-
-
-
-