-
公开(公告)号:CN115064702B
公开(公告)日:2022-12-13
申请号:CN202210868779.3
申请日:2022-07-22
Applicant: 哈尔滨工业大学
IPC: H01M4/66 , H01M10/054 , H01M10/058 , H01M10/0565
Abstract: 一种亲钠型3D碳集流体及其制备方法和应用以及无负极固态钠电池的制备方法,属于钠离子电池技术领域,方案如下:亲钠型3D碳集流体的制备、原位聚合浆料的制备、复合固态电极片的制备、一体化无负极固态钠电池的制备。其中,所述一体化无负极固态钠电池的制备采用原位聚合策略,将聚合浆料滴加到3D碳集流体和复合固态电极片上,可以实现集流体和固态电极片内部孔隙的消除及良好的界面润湿性,从而扩宽电池内部钠离子的传输路径并降低钠离子的迁移阻力。本发明兼具富成核位点诱导钠离子均匀沉积以提升无负极电池循环效率以及原位聚合一体化技术以促进界面钠离子传输的技术优势,将推动低成本、高安全、高能量密度的无负极固态电池的进步。
-
公开(公告)号:CN115360358A
公开(公告)日:2022-11-18
申请号:CN202211020932.3
申请日:2022-08-24
Applicant: 哈尔滨工业大学
IPC: H01M4/66 , H01M50/131 , H01M50/121 , H01M10/0525
Abstract: 一种基于光照激发的全固态锂二次电池及应用,属于全固态锂电池技术领域,具体方案如下:一种基于光照激发的全固态锂二次电池,包括正极极片、固态电解质Ⅰ、负极极片和电池壳体,所述正极极片包括正极集流体和涂覆在其上的正极材料,其特征在于:所述正极集流体和电池壳体的正极侧均是透光的。本发明中,通过电池结构设计,将锂离子电池的正极活性物质暴露在光源下,利用光源作为全固态锂二次电池的直接能量来源之一,在保证全固态电池容量、安全性能的前提下,利用光生电子和空穴,降低极化电势,最终使常规固态锂电池的倍率性能得到显著提升。
-
公开(公告)号:CN115312776A
公开(公告)日:2022-11-08
申请号:CN202210969560.2
申请日:2022-08-12
Applicant: 哈尔滨工业大学
IPC: H01M4/62 , H01M4/04 , H01M4/136 , H01M4/1397
Abstract: 一种高比能复合固态正极的制备方法,属于固态电池技术领域,具体包括以下步骤:步骤一、将聚氧化乙烯、锂盐、碳酸乙烯酯溶解在有机溶剂中得到溶液A;步骤二、将溶液A与正极活性物质、导电剂搅拌均匀得到正极浆料A;步骤三、将正极浆料A均分为若干组,并分别向其中加入不同质量分数的活性无机填料得到正极浆料B;步骤四、在正极集流体表面依次涂布若干组正极浆料B得到正极极片,其中,近集流体一端至远离集流体一端,正极浆料B中活性无机填料的质量分数呈梯度递减;步骤五、将步骤四制得的正极极片干燥并压片得到复合固态正极。本发明活性无机填料引发增塑剂发生开环聚合提升复合固态正极的离子电导率进而提升电池的功率密度。
-
公开(公告)号:CN112551582B
公开(公告)日:2022-09-23
申请号:CN202011455143.3
申请日:2020-12-10
Applicant: 哈尔滨工业大学
IPC: C01G33/00 , H01M4/485 , H01M4/62 , H01M10/0525
Abstract: 本发明公开了一种氮掺杂的缺氧型铌酸钛电极材料的制备方法及应用,涉及锂离子电池技术领域,具体包括以下步骤:步骤一、称取铌源和钛源置于球磨罐中,以有机溶剂作为分散介质,使原料充分球磨混合得到混合物;步骤二、将步骤一所得混合物干燥,得到前驱体;步骤三、将步骤二所得前驱体在NH3气氛下进行管式炉煅烧处理,自然降温至常温后即得到氮掺杂的缺氧型铌酸钛电极材料。本发明在NH3气氛下煅烧改性,不但可以制造铌酸钛的缺氧态,拓宽锂离子进入电极的通道,使得材料可以存储更多的锂离子,而且引入氮元素进行掺杂,氮掺杂有益于提供更多活性位点,提高材料的电导性,使得N‑TiNb2O7‑x电极材料具有优异的电化学性能。
-
公开(公告)号:CN115064672A
公开(公告)日:2022-09-16
申请号:CN202210722192.1
申请日:2022-06-17
Applicant: 哈尔滨工业大学
IPC: H01M4/36 , H01M4/58 , H01M4/62 , H01M10/0525
Abstract: 本发明公开了一种星状包覆层电池电极材料及其制备方法和应用,其包括原位聚合物形成的具有离子电子双导电作用的星状包覆层,以及电池用活性物质材料,利用高稳定性的聚合物对活性进行包覆,包覆后的材料具有特殊的星状结构,具有较大的比表面积,且具有一定的柔韧性,能够增加活性物质与固体电解质的接触,并且缓解体积应变带来的界面失效,提高固态电池整体的性能。此外,本发明采用的星状包覆层为聚合物,具有一定的柔韧性,能够有效缓解复合固态电极中活性物质的体积膨胀/收缩,可以作为缓冲层,提高电池整体寿命。
-
公开(公告)号:CN114122319A
公开(公告)日:2022-03-01
申请号:CN202111408667.1
申请日:2021-11-19
Applicant: 哈尔滨工业大学
IPC: H01M4/13 , H01M10/0565 , H01M10/54
Abstract: 一种固态聚合物锂金属电池电极与电解质高效分离的方法,以扣式电池为例,所述方法为:对测试后固态聚合物锂金属电池进行拆解,去处外面金属壳;获得粘合紧密的单元块(锂金属||电解质||正极),然后从锂片中心撕下锂金属,暴露出聚合物电解质部分;步骤三、用特定溶剂浸泡单元片(电解质||正极)电解质一面;步骤四、反复浸泡,并除去浸泡后溶液,直至看到干净的正极;步骤五、在60‑80℃恒温10‑20h,得到正极材料。本发明涉及固态聚合物锂金属电池中电极与电解质高效分离的方法,本发明具有回收效率高且环境友好等优点,解决了循环测试后难以分离聚合物电解质与正极极片,并获得活性颗粒的问题。
-
公开(公告)号:CN113437249A
公开(公告)日:2021-09-24
申请号:CN202110729893.3
申请日:2021-06-29
Applicant: 哈尔滨工业大学
IPC: H01M4/13 , H01M4/139 , H01M4/04 , H01M10/052 , H01M10/0525
Abstract: 本发明公开了一种基于渗透法制备的全固态锂电池复合正极及其制备方法,涉及全固态锂电池技术领域。所述全固态锂电池正极为基于熔融渗透法得到的复合正极。本发明中,通过将煅烧得到的高离子电导率的Li1+xOHBrx在加热的条件下熔融渗透到正极极片的孔隙中,进而得到复合正极。该复合正极表面致密、均匀、孔隙率极低,并且可与固态电解质形成一个接触良好的固‑固界面,从而增大了固‑固接触面积,提供了稳定的、快速的锂离子通道,降低了界面电阻,最终使固态电池的性能得到了显著提高。
-
公开(公告)号:CN113054205A
公开(公告)日:2021-06-29
申请号:CN202110351667.6
申请日:2021-03-31
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种提高非贵金属催化剂氧还原催化活性的热处理工艺,所述工艺包括如下步骤:步骤一、将咪唑源在常温下进行搅拌分散,溶于甲醇溶剂中;步骤二、将金属源在常温下进行搅拌分散,溶于甲醇溶剂中;步骤三、将步骤一和步骤二中的溶液混合在一起,进行水热反应;步骤四、将步骤三制得的催化剂材料进行离心分离和离心洗涤;步骤五、将洗涤后的催化剂进行烘干;步骤六、将烘干后的催化剂材料进行充分研磨,并在惰性气体气氛下进行热处理。本发明制备的经过低温处理的Fe‑N‑C催化剂材料催化性能优异,在作为质子交换膜燃料电池的阴极催化剂材料可能拥有无可比拟的优势。这种低温热处理的方式可以在其他类型的Fe‑N‑C材料中得以借鉴。
-
公开(公告)号:CN111987290A
公开(公告)日:2020-11-24
申请号:CN202010916546.7
申请日:2020-09-03
Applicant: 哈尔滨工业大学
IPC: H01M4/1395 , H01M4/62 , H01M4/38 , H01M4/134 , H01M10/0525
Abstract: 本发明公开了一种锂/锂化金属氧化物框架复合结构负极的制备方法及其应用,所述方法如下:一、将MOx、导电碳和PVDF混合后均匀地涂敷在集流体上,真空烘干后,得到MOx极片;二、以金属锂片作为负极,MOx极片作为对电极,组装电池,进行恒流放电,控制截止电压,获得LiyMOx电极框架;三、将LiyMOx电极框架与熔融锂混合,得到复合结构负极,并采用固态电解质组装全固态电池。本发明将嵌入型过渡金属氧化物MOx作为载体,在其嵌锂后形成具有快速离子传输特性的LiyMOx电极框架,再在框架内部均匀地沉积金属锂,从而抑制锂枝晶的生长,避免安全事故的发生。
-
公开(公告)号:CN110523755A
公开(公告)日:2019-12-03
申请号:CN201910928198.2
申请日:2019-09-28
Applicant: 哈尔滨工业大学
IPC: B09B3/00 , H01M10/056 , B02C23/08
Abstract: 本发明公开了一种用于筛选均一粒径粉煤灰的简易半自动方法,所述方法包括如下步骤:球磨→预烧→水洗→磁性吸附→抽滤→水洗→酒精洗→自动抽滤→干燥→研磨。本发明通过半自动化实现粉煤灰的回收利用,分离出粒径均一的粉煤灰颗粒,变废为宝,有利于环保事业的发展。本发明使用的都是实验室常见且廉价的实验仪器,而且能够实现半自动化,节省财力、物力和人力,节约资源,操作简单。本发明所获的粒径均一的粉煤灰颗粒可以应用于聚合物固态电解质,提高离子电导率,促进全固态电池的发展。
-
-
-
-
-
-
-
-
-