一种电场探测器
    81.
    发明公开

    公开(公告)号:CN108982975A

    公开(公告)日:2018-12-11

    申请号:CN201810785984.7

    申请日:2018-07-17

    Abstract: 本申请公开了一种电场探测器,能够对两路激光器的偏振态进行控制,减小吸收峰提高信噪比。所述电场探测器包括半导体激光器、第一偏振片、原子气室、第二偏振片、分束器、光探测器、锁相放大器、信号发生器、偏振控制器、第三偏振片、调制器和耦合激光器。第一偏振片、原子气室、第二偏振片、分束器和光探测器设置在半导体激光器发射的第一光信号光路上。调制器、第三偏振片和偏振控制器设置在耦合激光器发射的第二光信号光路上。信号发生器连接锁相放大器和调制器。偏振控制器控制第二光信号经过第二偏振片进入原子气室。原子气室为碱金属气体与第一光信号和第二光信号相互作用和第一光信号在待测电场辐射下autler-townes分裂提供场所。锁相放大器输出信号。

    一种CPT原子钟控制方法
    82.
    发明公开

    公开(公告)号:CN107404317A

    公开(公告)日:2017-11-28

    申请号:CN201710644280.3

    申请日:2017-08-01

    Abstract: 本发明公开一种CPT原子钟控制方法,由一种CPT原子钟控制系统执行,系统包括激光器、物理系统、微波频率控制模块、激光频率控制模块、温度控制模块、信号检测模块、磁场控制模块和控制芯片,包括步骤:初始化所述控制芯片、激光器、物理系统和各控制模块;所述激光器和物理系统的温度控制;扫描激光频率并检测激光共振信号;调节激光调制信号的相位;扫描微波频率并检测微波共振信号;锁定微波频率并检测是否失锁,循环检测判断所述微波频率和所述激光频率是否失锁。

    一种实现CPT原子频率标准的方法及装置

    公开(公告)号:CN105577188A

    公开(公告)日:2016-05-11

    申请号:CN201510956144.9

    申请日:2015-12-17

    CPC classification number: H03L7/26

    Abstract: 本申请实施例提供一种实现CPT原子频率标准的方法及装置,通过第一VCSEL经过偏振片发射的激光与第二VCSEL经过半波片发射的激光垂直相交于极化分光镜中,使该第一VCSEL和第二VCSEL产生线偏振光相干多色光并与吸收泡中的原子相互作用,实现CPT原子频率标准的输出的同时,避免原子积聚在极化暗态。并且,耦合在各VCSEL的输入电流上的微波信号的功率较低,使各VCSEL发射激光的各级边带总能量低于阈值,保证了不参与原子相互作用的激光能量处于较低水平,减少了CPT共振谱线的干扰和噪音。通过本申请提供的方法及装置,可以提高CPT共振谱线的对比度,改善CPT原子频率标准的稳定度。

    一种光频原子钟闭环锁定状态探测系统

    公开(公告)号:CN114355753B

    公开(公告)日:2024-03-29

    申请号:CN202111627492.3

    申请日:2021-12-28

    Abstract: 本发明提供了一种光频原子钟闭环锁定状态探测系统,包括激光发射模块、原子束管、参数探测模块、PID模块、荧光探测器、专家诊断库、反馈控制模块;参数探测模块包含多个参数探测单元,第二波长激光在第一波长激光与原子束管的原子作用前、后的波长和功率值;荧光探测器探测后的电信号电压值;经过PID模块后的电信号电压值;原子炉温度、原子共振信号以及原子束管的温度;PID模块检测PID锁定参数。本发明瞄准目前原子光钟闭环锁定状态缺乏智能化监测的问题,创新性地提出利用多个电路模块,探测电压、带宽等指标,并对多项参数进行实时监测控制,分析内在关联,有助于提高系统闭环锁定指标。

    一种超稳窄线宽激光器系统和耦合调节方法

    公开(公告)号:CN114300918B

    公开(公告)日:2024-01-23

    申请号:CN202111425877.1

    申请日:2021-11-26

    Abstract: 本申请公开了一种超稳窄线宽激光器系统,包括顺序连接的激光器、光纤隔离器、声光调制器、光纤耦合器、电光调制器、环形器。所述光纤耦合器旁路输出稳定激光。所述环形器输出端口返回的光经第三端口输出至第一光电探测器,获得误差信号。所述环形器输出端口的光经光纤耦合镜、光学参考腔输出至第二光电探测器。所述光纤耦合镜固定在调整架上,所述调整架配置为在垂直于光传播方向的平面上平移、且在沿光传播方向上改变水平偏离角、垂直偏离角,使耦合到光学参考腔的光强最大。本申请还包含所述超稳窄线宽激光器系统的调节方法。本申请解决可移动超稳激光器组成复杂、调节操作不便的问题。

    一种量子功率探测模块
    87.
    发明授权

    公开(公告)号:CN112763794B

    公开(公告)日:2023-08-15

    申请号:CN202011449338.7

    申请日:2020-12-09

    Abstract: 本发明公开一种量子功率探测模块,包括:碱原子气室,在所述碱原子气室外部设置外部套筒,其中,所述碱原子气室内部含有碱金属原子及一定量的缓冲气体,在所述碱原子气室上设置冷端,用于对整个碱原子气室进行控温;所述外部套筒采用中空的结构,根据所述碱原子气室的型状设置中空的尺寸,用于将所述碱原子气室嵌入所述中空套筒内部,所述外部套筒设置连接部件,用于将所述冷端用于温控的连线引出。本发明的优点是:结构简单,具有碱原子气室,在所述碱原子气室外部设置外部套筒,所述外部套筒用于将所述碱原子气室嵌入所述中空套筒内部,适用于微波功率的探测,提高了原子与外场的耦合效率。

    一种时间抖动频谱测量装置、方法

    公开(公告)号:CN110954224B

    公开(公告)日:2023-06-02

    申请号:CN201911173113.0

    申请日:2019-11-26

    Abstract: 本发明公开了一种时间抖动频谱测量装置和方法,解决现有装置和方法结构复杂、不便操作的问题。所述装置,包含:第一飞秒激光器、第二飞秒激光器、第一光学晶体、第二光学晶体、第一探测采集模块、第二探测采集模块、上位机;所述第一、第二飞秒激光器,用于产生重复频率不同、偏振方向正交的激光脉冲;所述第一、第二光学晶体,用于输出第一、第二倍频光信号;所述第一、第二探测采集模块,分别用于接收所述第一、第二倍频光信号,进行光电转换和低通滤波,输出第一、第二包络信号;所述上位机,用于接收所述第一、第二包络信号,拟合得到第一、第二脉冲重合时刻,并计算得到时间抖动偏差与时间抖动频谱。本发明易于工程实现。

    一种高稳定频率源,太赫兹频率产生实验装置及使用方法

    公开(公告)号:CN112763084B

    公开(公告)日:2022-08-23

    申请号:CN202011498619.1

    申请日:2020-12-17

    Abstract: 本发明公开一种高稳定频率源,太赫兹频率产生实验装置及使用方法,包括:连续激光器,所述连续激光器输出连续激光,经过分束镜分为透射光与反射光两路,透射光输出后照射到光电导天线上;飞秒激光频率梳,用于输出飞秒激光,与所述反射光经过合束镜合束后入射到光栅上;光电探测器,用于接收光栅反射的连续激光的反射光和飞秒激光频率梳相应梳齿频率成分的激光,探测到连续激光与飞秒激光的拍频信号;锁相环电路,用于接收所述拍频信号,与原子钟输出的参考信号鉴相后作为误差信号,输出反馈控制信号控制连续激光器的输出激光频率,使其锁定在飞秒激光频率梳相应梳齿的激光频率上,本发明可以大幅提升现有太赫兹频率源的频率稳定性与准确度。

    一种耗散系统自旋压缩态的制备方法

    公开(公告)号:CN113014255B

    公开(公告)日:2022-05-20

    申请号:CN202110201398.5

    申请日:2021-02-23

    Abstract: 本发明公开一种耗散系统自旋压缩态的制备方法,包括:提供一耗散系统,所述耗散系统具有其原子自旋态依赖于原子相互作用的能级结构;向所述耗散系统施加拉曼光,以使通过拉曼光耦合耗散的激发态与原子的基态产生非厄米自旋轨道耦合作用;记录来自所述耗散系统的自旋波动信号,从所述自旋波动信号中确定自旋相互作用的实验参数随时间演化的变化情况;根据所述自旋相互作用的实验参数随时间演化的变化情况,测量非厄米系数占主导时的自旋压缩性质,以产生自旋压缩态。本发明使得自旋压缩从周期性变化转变到稳定最优的自旋压缩态上,最终随时间演化达到稳定的自旋压缩态,产生反直觉的物理效应,不仅未破坏自旋压缩效应,反而更容易获得且更加稳定。

Patent Agency Ranking