-
公开(公告)号:CN115040089B
公开(公告)日:2022-12-06
申请号:CN202210981128.5
申请日:2022-08-16
Abstract: 本发明涉及非接触式生理信号检测领域,尤其涉及一种基于深度学习的脉搏波峰值检测与分类的方法和装置,该方法包括:步骤一,利用血氧仪采集人体指尖的脉搏波信号,采用滑动窗口的方式进行分帧处理,得到若干段短信号;步骤二,将若干段短信号按照时间顺序排列,输入到关键点检测模块中进行峰值检测和整理得到所有峰值点;步骤三,将步骤二得到的峰值点及采集得到的整段脉搏波信号输入到分类模块中,通过判断信号的强度、波动和平涩程度来对脉搏波信号进行分类,并记录。本发明能够有效应用于基于脉搏波的生物识别系统中,并提高识别的准确率。
-
公开(公告)号:CN114972947B
公开(公告)日:2022-12-06
申请号:CN202210882622.6
申请日:2022-07-26
Applicant: 之江实验室
IPC: G06V10/80 , G06V10/82 , G06V20/70 , G06V30/148 , G06V30/19 , G06V10/764 , G06V10/28
Abstract: 本发明公开了一种基于模糊语义建模的深度场景文本检测方法和装置,该方法包括:步骤一,获取现有的用于训练场景文本检测的多组具有真值标注的图像数据集;步骤二,对数据集中的图像进行特征学习与全局特征融合,得到融合的全局特征图;步骤三,对融合的全局特征图进行像素级别语义分类,同时通过数值回归预测像素级别的语义可靠性,在全监督下进行多分支的联合优化,完成端到端联合学习框架的构建;步骤四,使用端到端联合学习框架,预测图像中的模糊语义信息,并利用可靠性分析及融合获得文本属性图;步骤五,对文本属性图进行二值化和联通域提取,得到最终的文本检测结果。本发明实现方法简便,灵活鲁棒,适用范围广。
-
公开(公告)号:CN114677633B
公开(公告)日:2022-12-02
申请号:CN202210579638.X
申请日:2022-05-26
IPC: G06V20/40 , G06V20/52 , G06V40/10 , G06V10/82 , G06V10/80 , G06V10/74 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了基于多部件特征融合的行人检测多目标跟踪系统及方法,首先,获取行人图像数据集并进行行人多部件标注;其次,构造并训练基于多部件特征融合的行人检测多目标跟踪系统,系统包括沙漏模块、目标尺寸回归模块、目标中心点偏移回归模块、目标中心点热度图模块和多部件特征融合模块;然后,基于所述训练得到的模型进行推理获取单帧行人检测结果及多帧的行人融合特征;其次,计算当前帧检测得到的行人特征与前一帧轨迹的融合特征的相似度;最终,利用所述相似度矩阵进行数据关联,生成当前帧的行人轨迹,并更新轨迹的特征。本方法耗时较低,且对遮挡问题鲁棒性较好。
-
公开(公告)号:CN115331732A
公开(公告)日:2022-11-11
申请号:CN202211238697.7
申请日:2022-10-11
Applicant: 之江实验室
Abstract: 本发明公开了基于图神经网络的基因表型训练、预测方法及装置,根据现有公开的基因位点与表型的相关性,构建图神经网络:节点代表基因位点,边代表两个基因位点同时与某个表型相关,且边的权重代表基因位点之间的关联程度;采集样本的基因数据,并收集各个样本对应的表型数据;训练过程中,对输入的基因数据基于其位点探测概率值进行编码;将编码数据输入构建的图神经网络;采用均匀采样进行节点邻域选择,并通过邻域节点的权重与卷积核参数更新各个节点;将每个节点的输出结果进行拼接,并将其输入多层感知器,输出表型分类结果;将分类结果与真值进行比较,训练与验证图神经网络;再将待分类的基因数据输入训练好的图神经网络进行表型分类。
-
公开(公告)号:CN113297906B
公开(公告)日:2022-09-09
申请号:CN202110423900.7
申请日:2021-04-20
Abstract: 本发明公开了一种基于知识蒸馏的行人重识别模型压缩方法及评价方法,压缩方法包括如下步骤:S1:预训练行人重识别教师模型;S2:构建行人重识别学生模型;S3:构建低阶状态蒸馏损失和高阶结构蒸馏损失,将教师模型的知识迁移到学生模型,联合优化行人重识别任务损失和蒸馏损失进行训练;评价方法还包括如下步骤:S4:将底库测试集输入训练好的学生模型,获得底库行人特征;S5:将查询测试集输入训练好的学生模型,获得行人特征,与底库行人特征进行相似度计算,经度量排序找到与之具有相同身份的底库行人图片,计算时间效率和性能准确度。
-
公开(公告)号:CN115019297A
公开(公告)日:2022-09-06
申请号:CN202210930831.3
申请日:2022-08-04
Applicant: 之江实验室
Abstract: 本发明公开了一种基于颜色增广的实时车牌检测识别方法和装置,该方法包括:步骤一,获取包含车牌的汽车图像,作为车牌检测训练集,通过训练好的车牌检测模型推理得到车牌检测结果;步骤二,对检测得到的车牌进行视图矫正变换,得到车牌正面视角的图像;步骤三,将得到的车牌正面视角的图像,作为车牌识别训练集,使用基于深度神经网络的车牌识别模型进行模型训练,再通过训练好的车牌识别模型进行车牌识别得到车牌识别结果;步骤四,将车牌检测结果和车牌识别结果在原测试图像上进行展示或者按需要输出,完成对图像中的车牌的检测和识别。本发明实现方法简单,可移植性强,提高了车牌检测模型和车牌识别模型的准确率,增强了模型的泛化能力。
-
公开(公告)号:CN114663965A
公开(公告)日:2022-06-24
申请号:CN202210566142.9
申请日:2022-05-24
Abstract: 本发明公开一种基于双阶段交替学习的人证比对方法和装置,该方法包括:步骤一:收集人脸图像;步骤二:将收集的人脸图像进行裁剪、水平翻转、去噪、亮度增强和对比度增强处理后,得到人脸图像数据集,即训练集,并将训练集分批;步骤三:将经过处理后的训练集的图像依批次输入到卷积神经网络,使用余弦损失函数或者三元组损失函数的双阶段交替的人脸类别训练,得到训练好的人证比对模型;步骤四:将要进行人证比对的摄像头图像和证件图像输入训练好的人证比对模型,提取人脸特征,计算人脸相似度,输出人证比对结果。本发明有效提升了人证比对的准确率,实现余弦损失函数与三元组损失函数的结合,具有重大的应用价值。
-
公开(公告)号:CN112507827B
公开(公告)日:2022-05-13
申请号:CN202011370049.8
申请日:2020-11-30
Abstract: 本发明公开了一种智能视频打靶实时检测方法,包括如下步骤:获取射击打靶图像;将打靶图像转换为灰度图;采用高斯滤波对灰度图像进行预处理,减少图像中的噪声干扰;初始化获得有效第一帧图像为基准帧;计算当前帧与基准帧的帧差,对帧差图进行图像二值化,并采用中值滤波对二值化图像去噪;找出二值化图像中所有目标的轮廓,获得目标候选框;在进行弹孔检测;发现新的弹孔或者连续一组帧后未更新基准帧时,对基准帧进行更新;最后,通过统计每个弹孔在各靶环中的个数进行环值判定,获取射击打靶检测结果。本发明实现方法简单,可移植性强,速度快,能够实现对监控摄像头拍摄的打靶成绩的精准实时检测。
-
公开(公告)号:CN113947766B
公开(公告)日:2022-04-22
申请号:CN202111567665.7
申请日:2021-12-21
Applicant: 之江实验室
Abstract: 本发明公开了一种基于卷积神经网络的实时车牌检测方法,包括如下步骤:获取包含车牌的车辆图像,作为训练集,设计keypoint‑Anchor,提取训练集的特征;使用基于深度卷积神经网络的检测模型,作为车牌检测的基线网络架构,并按keypoint‑Anchor方式修改检测模型;使用训练集、目标框坐标及角点坐标对修改后的检测模型进行训练,获得训练好的检测模型;使用训练好的检测模型对待检测的图像进行检测,获得不同角度拍摄图像中车牌的检测结果。本发明实现方法简单,可移植性强,能够实现对摄像头拍摄的公路上、停车场、小区出入口等场所中车牌的精准检测。
-
公开(公告)号:CN113673489B
公开(公告)日:2022-04-08
申请号:CN202111225547.8
申请日:2021-10-21
Applicant: 之江实验室
IPC: G06V20/40 , G06V20/52 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明涉及计算机视觉及深度学习领域,尤其涉及一种基于级联Transformer的视频群体行为识别方法,首先采集生成视频数据集,将视频数据集经过三维骨干网络提取三维时空特征,选取关键帧图像空间特征图;对关键帧图像空间特征图进行预处理后送入人体目标检测Transformer,输出关键帧图像中的人体目标框;然后,映射筛选后人体目标框在关键帧图像特征图上所对应的子特征图,结合关键帧图像周围帧特征图计算query/key/value,输入群体行为识别Transfomer,输出群体级别时空编码特征图;最后,经过多层感知机对群体行为进行分类。本发明具有有效提高群体行为识别准确率的效果。
-
-
-
-
-
-
-
-
-