一种基于深度学习识别自我承认技术债务方法

    公开(公告)号:CN113377422B

    公开(公告)日:2024-04-05

    申请号:CN202110642380.9

    申请日:2021-06-09

    Abstract: 本发明公开了一种基于深度学习识别自我承认技术债务方法,包括:构建文本的图形结构,基于图形的单词交互,将词嵌入向量作为门控图神经网络中图的节点特征的隐藏状态,将节点接收到的信息通过更新门确定有多少前一时刻和当前时刻的信息需要传递到下一时刻,节点接收到的信息通过重置门确定有多少前一时刻和当前的时刻的信息需要被舍弃,最终将获得重置门输出的信息和更新门输出的信息、以及自身节点的信息三者进行合并;使用Focal loss函数使损失值最小化,获得准确的预测结果;使用神经网络模型对预测结果进行预测,得到精确度、召回率以及精确度和召回率的调和平均值F1。

    一种基于深度强化学习的促进合作的工人激励方法

    公开(公告)号:CN117196548A

    公开(公告)日:2023-12-08

    申请号:CN202311103212.8

    申请日:2023-08-28

    Abstract: 本发明公开了一种基于深度强化学习的促进合作的工人激励方法,包括:建立工人合作模型将众包工人之间的互动过程建模为博弈过程;将众包工人的协作过程建模为马尔可夫决策过程,并使用强化学习算法优化工人的协作行为;利用图神经网络基于深度强化学习的动态激励机制和DIFFPOOL技术学习整个网络的全局表示和工人的局部表示,生成适合每个工人的激励值。该方法提出了ACM模型和DDWM激励机制来解决众包任务中的协作问题,将工人的局部表示和整个网络的全局表示进行结合,这可以使请求者来估计工人在网络中是否具有影响力和判断该工人是否能够促进合作,从而生成适合每个工人的激励值。

    基于深度强化学习的Web服务众包测试任务分配方法

    公开(公告)号:CN110554964B

    公开(公告)日:2023-05-16

    申请号:CN201910834368.0

    申请日:2019-09-03

    Abstract: 本发明公开了一种基于深度强化学习的Web服务众包测试任务分配方法,包括:根据众包平台上的工人池和任务池内的数据信息、对深度强化学习的Web服务测试任务分配模型进行训练;众包平台接收需求者提交的测试任务,使用完成训练的Web服务测试任务分配模型进行测试任务的分配;工人接受并执行任务、将任务测试结果反馈给众包平台,众包平台将工人反馈的测试结果传送给相应的任务需求者。本方法通过使用深度强化学习方法DQN来训练Web服务测试任务分配模型,达到了对Web服务众包测试任务进行实时分配的效果,可以在一定程度上保证测试任务能够交由众包测试平台上比较合适的测试人员来处理,提升了测试效果。

    一种基于深度学习的移动设备图像去雾方法

    公开(公告)号:CN108898562B

    公开(公告)日:2022-04-12

    申请号:CN201810652664.4

    申请日:2018-06-22

    Abstract: 本发明公开了一种基于深度学习的移动设备图像去雾方法,包括以下步骤:获取实时采集的有雾图像;有雾图像输入区域检测网络,逐区域地提取有雾图像特征并输出有雾图像相关的特征图;特征图传入非线性回归网络层,获得有雾图像每个小区域的媒介透射率,得到透射率矩阵;透射率矩阵传入导向滤波模块,输出精细化透射率矩阵;通过透射率矩阵和有雾图的灰度图来计算大气光;通过透射率矩阵恢复所述采集到的有雾图像获得去雾后的图像。本发明通过具有区域检测功能的深度神经网络模型作为去雾方法的主体模型,在训练网络模型时不需要把图像裁剪成固定大小的图像块,扩大了各层的网络节点的感受野,充分考虑到图像中各个区域间的关系。

    一种基于深度学习的图自信学习软件漏洞检测方法

    公开(公告)号:CN113378178A

    公开(公告)日:2021-09-10

    申请号:CN202110687688.5

    申请日:2021-06-21

    Abstract: 本发明公开了一种基于深度学习的图自信学习软件漏洞检测方法,包括:对源代码进行构图:将唯一的单词表示为顶点,将单词之间的协同表示为边来构造代码的图,获取每个图的连接的边的初始特征以及每个节点的初始特征值;构建深度置信网络模型,将转化为图结构的数据集输入至该模型中,找出数据集中是噪音的样本,把噪音样本从数据集中删除;使用门控图神经网络聚集和传递代码图中相邻代码节点的信息,学习代码节点的特征并进行图级预测从而对软件代码漏洞进行检测。该方法通过深度学习的图自信学习软件漏洞检测方法来训练识别软件漏洞模型,在检测软件漏洞方面取得了良好的效果,提高了在软件性能问题。

    CWS容错问题中的错误修复策略的选择方法

    公开(公告)号:CN109451037B

    公开(公告)日:2021-06-08

    申请号:CN201811481963.2

    申请日:2018-12-05

    Abstract: 本发明公开了一种CWS容错问题中的错误修复策略的选择方法,包括步骤为:执行某个CWS,执行过程中某个Web服务出现错误时,将该CWS提交给错误修复策略选择算法模块进行处理;错误修复策略选择模块对出错的Web服务进行错误修复策略的选择;获取策略选择算法模块反馈的结果;以及使用反馈结果中的修复策略对出错的Web服务进行修复。通过采用本发明所述的策略选择方法,当需要执行多个CWS,或者CWS中的服务数量较多,出错Web服务出现的概率很高时,能够更快更准地选择最合适的错误修复策略。

    一种基于深度强化学习的实时Bug分派方法

    公开(公告)号:CN111309907A

    公开(公告)日:2020-06-19

    申请号:CN202010085034.0

    申请日:2020-02-10

    Inventor: 陈荣 张佳丽

    Abstract: 本发明公开了一种基于深度强化学习的实时Bug分派方法,包括:对初始的bug数据进行预处理,使用深度强化学习DQN算法,将缺陷报告修复任务分派给合适的开发者:初始化循环神经网络参数,初始化所有状态动作对的价值Q;将缺陷报告的文本信息和修复者活跃度信息向量化并作为状态S的初始特征向量;将初始特征向量输入到神经网络Q,通过神经网络Q的前向传播输出每个动作at对应的Q值,根据策略π选择对应的动作;在状态S执行当前动作at得到新的状态s'、奖励R以及是否终止状态的标志flag;通过深度多语义特征融合方法计算当前期望目标值Q:使用均方误差计算损失函数,并通过神经网络Q反向传播更新参数,重复执行以上步骤,直至参数趋于收敛。

    一种自动标记软件错误报告并进行严重性识别的方法

    公开(公告)号:CN110287124A

    公开(公告)日:2019-09-27

    申请号:CN201910595620.7

    申请日:2019-07-03

    Abstract: 本发明公开了一种自动标记软件错误报告并进行严重性识别的方法,包括以下步骤:S1:对软件错误报告进行编码并将错误报告标记为严重或不严重;S2:采用严重报告和不严重报告训练分类器,获得每个输入报告的后验概率,其中后验概率为输入报告分类的概率分布;S3:采用完成训练的分类器对无标记报告的数据集进行分类,并获得该数据集中每个样例的后验概率;S4:根据S3中求得的后验概率求解每个无标记报告的模糊度;S5:将无标记报告按照模糊度的升序排列,选取前k个无标记报告填充到原数据集中扩充数据集,对扩充后的数据集重新训练分类器。

    一种知识抽取的方法
    80.
    发明授权

    公开(公告)号:CN102663142B

    公开(公告)日:2014-02-26

    申请号:CN201210157204.7

    申请日:2012-05-18

    Abstract: 本发明公开了一种知识抽取的方法,包括以下步骤:计算约简初值;启用双矩编码策略;搜索初始化;计算结束判据;计算搜索个体的适应值;最优保存;状态转移联合操作。本发明采用双矩编码策略,搜索个体位置编码成0、1字符串,维度与条件属性个数相同。当维度规模超过23时,完成约简所消耗的时间并不呈指数显著增长,节约了空间维度和时间。本发明采用粗糙集正区判别POS'E=U′pos适应值为对应条件属性个数,如果POS'E≠U′pos适应值惩罚为条件属性总数,这一策略简单合理地保证了知识抽取效果。本发明用搜索个体所组成的群体优势动态地搜索,并采用一种有效的正区比较进行特征组合得到多知识的方法。

Patent Agency Ranking