-
公开(公告)号:CN108305616B
公开(公告)日:2021-03-16
申请号:CN201810039421.3
申请日:2018-01-16
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
Abstract: 本发明涉及一种基于长短时特征提取的音频场景识别方法及装置,该方法包括,对输入待识别音频信号进行预处理;对经过预处理后的所述待识别音频信号,进行短时音频特征提取,再进行长时音频特征提取,将所述待识别音频信号的所述长、短时音频特征联合,输入分类模型及其融合模型,进行分类和识别,输出音频场景的识别标签。本发明在常规短时特征提取的基础之上,进一步联合音频场景长时特征,可以表征复杂的音频场景信息,输入分类模型及其融合模型,进行分类和识别,输出音频场景的识别标签,其鲁棒性更强、区分性更好,且能够在更大程度上表征场景数据的整体特性,识别效率高、稳定性强。
-
公开(公告)号:CN110610230A
公开(公告)日:2019-12-24
申请号:CN201910698120.6
申请日:2019-07-31
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种台标检测方法、装置及可读存储介质,该方法包括如下步骤:获取台标数据集,并对所述台标数据集进行分组获得台标训练集;构建多损失融合的孪生神经网络,并基于所述台标训练集对所构建的多损失融合的孪生神经网络进行训练获得训练后的多损失融合的孪生神经网络;通过所述训练后的多损失融合的孪生神经网络对待测台标进行检测。本发明方法通过构建孪生神经网络框架,很好地消除了样本数量不足对训练网络带来的影响,可以更好地检测未知的新的种类的敏感台标。
-
公开(公告)号:CN110505348A
公开(公告)日:2019-11-26
申请号:CN201910794491.4
申请日:2019-08-27
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种APP收集用户个人敏感信息的风险评估方法,通过对APP进行静态分析以及动态分析,得出权限评分、调用函数评分、SDK评分、流量包参数评分和域名评分,再进行加权求和,得出被评估APP的最终评分,根据评估矩阵得出被评估APP的风险评级;根据风险评级反向维护SDK风险权重库和域名风险权重库,对SDK或域名进行风险权重的修正。本发明的APP收集用户个人敏感信息的风险评估方法包含用户输入的用户个人敏感信息、非用户输入的潜在用户个人敏感信息,对APP收集用户个人敏感信息的风险程度进行量化,更全面的涵盖了多种敏感信息点,细化了APP收集用户个人敏感信息的风险大小,能大批量的评估APP收集用户个人敏感信息的风险程度。
-
公开(公告)号:CN114943073B
公开(公告)日:2024-09-10
申请号:CN202210380497.9
申请日:2022-04-12
Applicant: 国家计算机网络与信息安全管理中心 , 北京赋乐科技有限公司
IPC: G06F21/46 , G06F21/60 , G06F18/214 , G06F18/20 , G06N3/0442 , G06N3/0464 , G06N3/08 , G06N3/126 , G06N7/01
Abstract: 本公开的实施例提供了加密流量的通用对称加密协议脱壳方法、装置、设备和计算机可读存储介质。所述方法包括获取加密协议的流量;基于预设的密码字典,通过马尔科夫‑GEP模型生成新的密码字典;基于加密协议密码字符组合规律,对所述新的密码字典中的密码进行规约;基于规约后的新的密码字典和传统的解密脱壳方法,构建对称加密协议脱壳模型;将所述加密协议的流量,输入至所述对称加密协议脱壳模型,完成脱壳。提高了脱壳准确度,使得脱壳更加高效。
-
公开(公告)号:CN118349883A
公开(公告)日:2024-07-16
申请号:CN202410345245.1
申请日:2024-03-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/241 , G06F18/214 , G06N3/0455 , G06N3/0442 , G06N3/0464 , G06F21/60
Abstract: 本申请提供一种重要数据的识别方法、装置和电子设备,涉及数据处理技术领域和人工智能技术领域。该方法包括:在识别重要数据时,可以先获取待识别数据集,待识别数据集中包括多个数据和各数据的重要度指标;针对各数据,将数据和数据的重要度指标输入至预设的重要数据识别模型中,得到数据对应的重要度得分;再基于各数据对应的重要度得分,从多个数据中识别重要数据,这样基于重要数据识别模型识别重要数据,与现有技术中基于预设重要度规则识别重要数据相比,不仅可以有效地提高重要数据的识别效率,而且提高了识别结果的准确度。
-
公开(公告)号:CN117312864A
公开(公告)日:2023-12-29
申请号:CN202311618449.X
申请日:2023-11-30
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/214 , G06F18/10 , G06F18/25 , G06F40/284 , G06N3/08 , G06N3/0455 , G06N3/0475
Abstract: 本发明提供一种基于多模态信息的变形词生成模型的训练方法及装置,涉及语言生成技术领域,方法包括:获取变形词语料库,变形词语料库包括的不同初始样本由多模态信息组成;对变形词语料库中不同初始样本的不同类型的语料信息,采用对应类型的预处理方式分别进行预处理,生成大规模语料库;大规模语料库中每个语料样本包括多个语料信息的权重及特征向量,不同的语料信息的权重用于表征不同的语料信息在对应样本中不同的贡献程度;基于大规模语料库中预设数量的语料样本包括的多个语料信息的权重及特征向量,对初始模型进行训练,得到基于多模态信息的变形词生成模型。本发明能够提高变形词生成的精度和准确率。
-
公开(公告)号:CN116578942B
公开(公告)日:2023-12-22
申请号:CN202310853781.8
申请日:2023-07-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/2433 , G06F17/18 , G06F18/214 , G06Q10/10
Abstract: 本申请实施例涉及一种榜单异常的处理方法及装置,所述方法包括:获取目标榜单信息,并按照设定的检测方法对目标榜单信息进行异常检测,得到对应的异常检测结果;将异常检测结果对应的异常样本信息输入到预先训练好的预估模型中进行评估处理,输出异常样本信息对应的在榜时长;根据在榜时长确定反馈调节策略;基于反馈调节策略执行对异常在榜信息的处理。通过创建榜单异常的检测工具,检测出每个榜单信息中存在的异常样本信息,通过设定的反馈调节策略对异常样本信息进行处理,达到治理异常榜单信息的目的;由此,可以实现利用机器审核结合人工审核,形成一套实时报警、反馈、调节的热榜治理机制,维护热榜的公平和稳定的技术效果。
-
公开(公告)号:CN111143508B
公开(公告)日:2023-04-28
申请号:CN201911244928.3
申请日:2019-12-06
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/33 , G06F40/30 , G06F40/289 , G06F18/23
Abstract: 本发明提出了一种基于通信类短文本的事件检测与跟踪方法,包括:提取与某事件对应的样本集合中各通信类短文本的语义特征、关键要素,及该样本集合的传播网络;根据该语义特征、该关键要素和该传播网络,分别获得任意两个该通信类短文本之间的语义距离、要素距离和用户距离;以该语义距离、该要素距离和该用户距离,获得任意两个该通信类短文本之间的度量距离;对所有该度量距离进行聚类,获得该事件的事件检测结果;提取该事件检测结果的特征属性以跟踪该事件。还提出一种基于通信类短文本的事件检测与跟踪系统,以及一种进行基于通信类短文本的事件检测与跟踪的数据处理装置。
-
公开(公告)号:CN110674290B
公开(公告)日:2023-03-10
申请号:CN201910733074.9
申请日:2019-08-09
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/36 , G06F40/284 , G06Q50/00
Abstract: 本发明提出了一种用于重叠社区发现的关系预测方法、装置和存储介质,用以解决由于获取的用户关系图不够完整,降低了社区发现结果准确性的问题。用于重叠社区发现的关系预测方法,包括:获取用户通信信息中包含的信息内容并分类;确定每一类信息内容中包含的两两信息内容之间的相似度;对于相似度大于预设阈值的两条信息内容,构建该两条信息内容的发送信息用户之间的短时转发关系;构建所述用户通信信息中发送信息用户和接收信息用户之间的收发关系;根据所述短时转发关系和所述收发关系,构建用户关系图;基于所述用户关系图,利用社区发现算法进行社区发现。
-
公开(公告)号:CN115080871A
公开(公告)日:2022-09-20
申请号:CN202210847062.0
申请日:2022-07-07
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9536 , G06F16/901 , G06N3/04 , G06N3/08 , G06Q50/00
Abstract: 本发明公开了一种跨社交网络社交用户对齐方法,涉及社交网络的用户关系挖掘领域。本发明为了解决现有社交用户对齐方法不能跨社交网络、计算精度低、对齐效率低的缺陷,采用如下步骤实现:采集社交网络的用户属性信息,构建用户关系拓扑图;根据边权重和节点的出入度计算节点权重;构建一阶近邻关系模型和二阶近邻关系模型,确定一阶邻居节点和二阶邻居节点,得到用户节点之间的相互关系;构建社交对齐神经网络,通过社交对齐神经网络对用户关系拓扑图中各节点进行邻居节点的信息聚合、拼接与非线性变换,得到跨社交网络的社交用户身份对齐结果。本发明主要用于通过跨社交网络对其社交用户实现用户关系挖掘。
-
-
-
-
-
-
-
-
-