-
公开(公告)号:CN113411178B
公开(公告)日:2023-03-14
申请号:CN202010126995.1
申请日:2020-02-28
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种二维智能扰动的高可靠光概率成型RoF传输方法,在发送端和接收端都已知最初始的密钥以及生成密钥的模型,利用它可以进行混沌映射,从而生成一串数目足够大的密钥组,通过概率成型对16QAM进行处理,得到非均匀分布16QAM信号,选取一组密钥进行混沌映射获得混沌序列从而生成扰动因子,用扰动因子对已经生成的16QAM的符号和子载波的位置进行扰动,完成加密过程,在接收端,对初始的密钥进行同样的处理,由于混沌映射结果的确定性可以获得相同的扰动因子,对接收到的信息进行解密后再解码。最后改变密钥进行下一组的信息传输,实现“一次一密”高安全传输。
-
公开(公告)号:CN111064516B
公开(公告)日:2022-03-15
申请号:CN201911312592.X
申请日:2019-12-18
Applicant: 南京信息工程大学
IPC: H04B10/2575 , H04B10/2543 , H04B10/516 , H04B10/54 , H04B10/556 , H04L27/34
Abstract: 本发明公开了一种基于六边形星座成型迭代的光载无线通信方法,包括以下步骤:输入端,原始信号通过串并变换转换为多路二进制数据流,对二进制数据流进行识别和添加标签;将处理后的信号通过概率匹配器进行星座压缩,将32QAM星座图压缩成25QAM星座图;对星座压缩后的信号进行逐次迭代从而得到最优星座压缩比,然后进行星座映射,得到19QAM星座图;将星座映射后的信号通过调制器调制成两路频带不同的光信号,然后依次进入光纤放大器调整信号功率、然后通过单模光纤传输到光衰减器进行处理、光电转换器进行光信号到电信号的转换、电功率放大器调整电信号的功率,最后进行无线传输;接收端,接收到信号依次进行星座解映射、模数转换、并串变换得到原始数据。
-
公开(公告)号:CN109217933B
公开(公告)日:2021-06-11
申请号:CN201811019035.4
申请日:2018-09-03
Applicant: 南京信息工程大学
IPC: H04B10/516 , H04B10/67
Abstract: 本发明公开了一种基于概率成形的无载波幅度相位调制解调方法,包括概率成形星座映射步骤、解映射步骤和无载波幅度相位调制、解调步骤,概率成形星座映射步骤包括确定非均匀概率成形星座映射表、进行非均匀分布比特交织、进行星座映射三个子步骤,概率成形星座解映射步骤包括确定非均匀概率成形星座映射表、进行星座解映射、非均匀分布比特解交织三个子步骤。本发明能够降低能量较高星座点的发射概率,提高能量较低星座点的发射概率,通过概率成形所带来的成形增益,降低了系统的平均发射功率,实现了短距离通信系统传输容量的提升。同时通过将比特流中比特的重新排列,使差错随机化,降低信道中的突发错误影响,实现了误码率方面的性能提升。
-
公开(公告)号:CN109067467B
公开(公告)日:2021-06-01
申请号:CN201811127867.8
申请日:2018-09-26
Applicant: 南京信息工程大学
IPC: H04B10/50 , H04L27/34 , H04B10/54 , H04B10/556
Abstract: 本发明公开了基于内外联合编码的N级阵列成型光生W波段发射方法,使输入的二进制序列依次经过权重编码和增益编码单元,实现编码增益并降低系统误码率;利用基于多载波阵列成型调制的新型物理层调制技术发射传输,减小相邻信道间以及子载波间的干扰;此外,该光生调制方法的各子载波间无需同步,该信号具有对于频率偏移和相位噪声不敏感的特点,使整个系统可获得较高的频谱效率和优良的传输性能。
-
公开(公告)号:CN110319786B
公开(公告)日:2020-12-29
申请号:CN201910693807.0
申请日:2019-07-30
Applicant: 南京信息工程大学
Abstract: 本发明涉及一种应变传感Fabry‑Perot干涉仪,包括第一单模光纤、第二单模光纤和毛细微管,所述毛细微管熔接于第一单模光纤和第二单模光纤之间。本发明提出的一种应变传感Fabry‑Perot干涉仪结构简单,制作方便便于且易于设计各种腔形。本发明的一种基于应变传感Fabry‑Perot干涉仪的应变传感方法利用光纤耦合器并联两个单腔光纤Fabry‑Perot干涉仪去实现游标效应,提高了应变传感的灵敏度。
-
公开(公告)号:CN111049586B
公开(公告)日:2020-11-03
申请号:CN201911353410.3
申请日:2019-12-25
Applicant: 南京信息工程大学
IPC: H04B10/50 , H04B10/516 , H04B10/524 , H04B10/54 , H04B10/66
Abstract: 本发明公开了一种基于降幅式概率成形的脉冲幅度位置调制系统,在系统发射端,二进制数据流信号经降幅式概率成形单元及位置映射单元处理后输出PS‑4×16APPM脉冲信号,马赫曾德尔调制器将生成的脉冲信号调制到1550nm的波长上,在经过光衰减器的功率控制后,光信号被发送到单模光纤上传输至系统的接收端。本发明将传统的APPM与概率成形技术相结合,概率成形的引入改变了原有脉冲幅度的分布特性,映射过程又将这种特性传递下去,使最终映射得到的信号为具有幅度压缩的APPM信号。本发明系统适应于直接探测的光调制解调系统,不需要使用相干接收机,可以有效降低系统复杂度从而提升处理效率。
-
公开(公告)号:CN110429468B
公开(公告)日:2020-11-03
申请号:CN201910691993.4
申请日:2019-07-29
Applicant: 南京信息工程大学
Abstract: 本发明涉及一种基于双环锁定的光子双频梳产生的系统,包括∞形控制环路、入射信号光源、环形器、耦合器、两个WDM波分复用器、两个IQ调制器和半导体光放大器SOA,所述耦合器设于∞形控制环路的环交接处,且与∞形控制环路连接,所述半导体光放大器SOA设于∞形控制环路的右环上,所述两个WDM波分复用器分别设于半导体光放大器SOA两端,两个所述IQ调制器对称设于∞形控制环路的两个环上,所述入射信号光源和环形器的端口1连接,所述环形器的端口2和耦合器连接。本发明的一种基于双环锁定的光子双频梳产生的系统及方法将能得到多组不同的光频梳,且获得好的频谱平坦度,系统集成度高,弥补了使用单一调制器产生的频梳数量有限的不足。
-
公开(公告)号:CN111239078A
公开(公告)日:2020-06-05
申请号:CN202010098515.5
申请日:2020-02-18
Applicant: 南京信息工程大学
Abstract: 本发明是基于混合腔的F-P光纤干涉仪湿度与横向压力传感器,包括导入光纤、空气泡腔和琼脂腔,导入光纤端面嵌入空气泡腔内,空气泡腔外表面远离导入光纤一侧粘覆有琼脂腔;导入光纤用于导入光源信号和传输反射光,导入光纤导入的光源信号在导入光纤端面与空气的分界面上发生第一次反射,第一次透射的光源信号经过空气泡腔在空气泡腔与琼脂腔的分界面上发生第二次反射,第二次透射的光源信号经过琼脂腔在琼脂腔与空气的分界面上发生第三次反射,第一次反射、第二次反射和第三次反射的光信号均通过导入光纤输出并发生干涉;通过湿度或压力变化导致的反射光谱强度的变化能够实现对湿度、横向压力的检测。该种传感器简单紧凑,可小型化,且制作成本低。
-
公开(公告)号:CN111064521A
公开(公告)日:2020-04-24
申请号:CN201911306152.3
申请日:2019-12-18
Applicant: 南京信息工程大学
IPC: H04B10/516 , H04L25/03
Abstract: 本发明涉及一种基于码分概率整形的多维正交编码调制方法,包括:串并变换原始一维二进制数据,并多维概率编码调制,得到非均匀概率分布的多路符号串;将多路符号串映射到星座点上,得到多维符号串;码分正交编码调制多维符号串,使多维符号串正交化,得到具有非均匀分布的多维正交数据流;对多维正交数据流依次进行正交化解调、星座解映射和多维概率解码处理,得到多路数据流;多路数据流经并串变换,得到原始一维二进制数据。本发明的编码调制方法较为简单,可实现大传输容量、低发射功率、低误码率的信号传输。
-
公开(公告)号:CN111064514A
公开(公告)日:2020-04-24
申请号:CN201911312594.9
申请日:2019-12-18
Applicant: 南京信息工程大学
IPC: H04B10/25 , H04B10/516 , H04B10/69
Abstract: 本发明公开了一种基于少模多芯光纤的光子概率成型信号传输方法,包括以下步骤:多路并行比特数据流经过概率成型星座映射得到具有16QAM信号,调制器将16QAM信号调制到激光上,随后16QAM信号经模式转换后转换为高阶模式的信号,经由少模多芯光纤进入模式复用器实现不同概率信号的不同模式传输以及空分复用,接收端通过空分模分复用器进行解复用,将光信号分解为多路信号,然后发送到光电探测器进行探测,将光信号转换为电信号得到多路16QAM信号,并对转换后的16QAM信号进行色散补偿;将16QAM信号符号在MIMO均衡器中应用自适应步长均衡算法进行MIMO均衡处理,来进行补偿模式耦合和模态延迟;最后进行相应的概率成型星座解映射以及数字信号处理器处理得到初始比特数据。
-
-
-
-
-
-
-
-
-