生成模型的方法、装置、可读存储介质及电子设备

    公开(公告)号:CN111898484A

    公开(公告)日:2020-11-06

    申请号:CN202010675753.8

    申请日:2020-07-14

    Abstract: 本公开涉及一种生成模型的方法、装置、可读存储介质及电子设备。方法包括:获取初始模型的至少一个目标初始网络层各自的初始参数矩阵和压缩比例;针对每一目标初始网络层,根据目标初始网络层的初始参数矩阵和压缩比例,对目标初始网络层进行压缩,以得到样本模型;获取样本数据集;根据样本数据集,对样本模型进行训练,以得到应用在样本数据集所属场景下的目标模型。如此,可以利用取值范围为大于0小于1的压缩比例对目标初始网络层进行压缩,使得压缩后的目标样本网络层中的参数数量小于初始网络层中的参数数量,进而减少了由目标样本网络层构成的样本模型的参数数量,使得目标模型的体积较小,有效地改善了目标模型的性能。

    一种基于气体传感器与深度学习的气味识别方法

    公开(公告)号:CN111443165A

    公开(公告)日:2020-07-24

    申请号:CN202010229387.3

    申请日:2020-03-27

    Abstract: 本发明公开了一种基于气体传感器与深度学习的气味识别方法,通过气体传感器阵列获取待测气味的响应曲线簇,并将该原始数据直接作为气味识别深度神经网络的输入样本,对其进行数据预处理与数据扩增,利用深度学习自动提取时间序列响应数据层次化特征,同时进行全局特征提取和长程动态特征提取,并通过分类器输出气味标签,实现高灵敏、特异性气味识别。本发明方法具有高灵敏度、高可靠性,可广泛应用于工业生产、医疗、环境和安全等领域。

    一种基于方向超像素的快速图像分割方法

    公开(公告)号:CN110992379A

    公开(公告)日:2020-04-10

    申请号:CN201911232075.1

    申请日:2019-12-05

    Abstract: 本发明公开了一种基于方向超像素的快速图像分割方法。与传统的基于聚类、分水岭、主动轮廓模型或图模型的分割方法相比,该方法的分割性能平均提高了100%。同时与之前一些通过卷积神经网络预测边缘加上耗时的后处理的分割方法相比,该方法可实时运行,速度是这些分割方法的18倍以上。首先,通过卷积神经网络在每个像素位置上预测一个二维向量,该向量的方向为从距离当前像素最近的边缘指向当前点。然后,根据每个位置预测的方向,得到基于方向的超像素图。在超像素图的基础上,构建区域关系图,最后使用定制的快速融合方法得到分割结果。该方法在图像分割的速度和精度的平衡上取得了很好的效果,实现简单,具有很广的实际应用范围。

    一种基于可微分二值化的实时文本检测方法

    公开(公告)号:CN110781967A

    公开(公告)日:2020-02-11

    申请号:CN201911038562.4

    申请日:2019-10-29

    Abstract: 本发明公开了一种基于可微分二值化的实时文本检测方法。通过对图像进行分割,得到文本区域的概率图,对概率图采用可微分二值化得到二值图,在二值图上寻找联通区域即可得到文本区域的包围盒。本方法通过给概率图和二值图均施加监督,将二值化的过程纳入训练之中,提升检测效果。本发明相对于现有文本检测方法,在准确度、运行效率和通用性方面都取得了卓越效果,有很强的实际应用价值。

    一种基于连接文字段的自然图片中多方向文本检测方法

    公开(公告)号:CN106897732B

    公开(公告)日:2019-10-08

    申请号:CN201710010596.7

    申请日:2017-01-06

    Inventor: 白翔 石葆光

    Abstract: 本发明公开了一种基于连接文字段的自然图片中多方向文本检测方法,文字段和连接是该检测方法中关键的两个步骤,定义如下:文字段指的是在图片上划分出许多单个多方向的包围盒区域,它们包围着一个文字条或者单词的一部分;连接指的是将相邻的字段连接起来,意味着它们属于同一个单词或同一句话。文字段和连接合起来使用一个端到端训练的全卷积神经网络以多种尺度进行等间隔地检测。最后的检测结果是先连接多个文字段组成新区域,然后对这些新区域进行组合而得到的。本发明提出的检测方法相对于现有技术在准确率、速度和模型简易度这些方面都取得了卓越的效果,效率高且鲁棒性强,能克服复杂的图片背景,另外也能检测图像中非拉丁文字的长文本。

    基于级联检测器的目标检测方法、目标检测模型及系统

    公开(公告)号:CN109886286A

    公开(公告)日:2019-06-14

    申请号:CN201910005486.0

    申请日:2019-01-03

    Abstract: 本发明公开了一种基于级联检测器的目标检测方法、目标检测模型及系统,该检测方法包括以下步骤:S1:采用带有目标标注的训练数据集对目标检测模型进行训练;S2:将待测图片输入训练好的目标检测模型中,通过特征提取、上采样、特征融合后得到不同尺寸的特征图P2、P3、…、Pn;S3:根据特征图Pn预测得到目标位置Bn和类别Cn;根据目标位置Bi从对应的特征图Pi-1中提取相应的特征进行目标预测,得到目标位置Bi-1和类别Ci-1,i=3~n;S4:以目标位置B2作为最终预测结果;本发明通过对目标候选框的多次迭代回归预测,得到预测更加准确的目标位置,提高了目标检测精度,检测准确度更高。

    海量网络文本与非文本图像分类方法

    公开(公告)号:CN106257496B

    公开(公告)日:2019-06-07

    申请号:CN201610541508.1

    申请日:2016-07-12

    Abstract: 本发明公开了一种海量网络文本与非文本图像分类方法,首先构建多尺度空间划分网络,然后对训练图像集中的图像,获取图像的多尺度图像块标签信息,并根据构建的多尺度空间划分网络,利用标注好的训练数据集训练多尺度空间划分网络的网络参数,然后利用构建的多尺度空间划分网络以及训练得到的网络参数,对待测试的大规模网络图像进行分类,最终获取图像的分类结果,对图像是否为文本图像做出判决,并获取文本区域在图像中的大致位置。本发明方法文本与非文本图像分类准确率高,且有很高的分类效率。

    一种任意形状的场景文本端到端识别方法

    公开(公告)号:CN108549893A

    公开(公告)日:2018-09-18

    申请号:CN201810294058.X

    申请日:2018-04-04

    Abstract: 本发明公开了一种任意形状的场景文本端到端识别方法,通过特征金字塔网络提取文本特征,用于区域提取网络生成候选文本框;然后通过快速区域分类回归分支调整候选文本框位置得到更准确的文本包围盒位置信息;其次将包围盒位置信息输入分割分支,通过像素投票算法得到预测字符序列;最后通过加权编辑距离算法对预测的字符序列进行处理,找到给定词典中预测序列的最匹配单词得到最终的文本识别结果。该方法可以同时检测和识别自然图像中任意形状的场景文本,包括水平文本、多方向文本和曲形文本,并且可以完全地进行端到端训练。本发明提出的检测识别方法相对于现有技术在准确度和通用性这些方面都取得了卓越的效果,有很强的实际应用价值。

    海量网络文本与非文本图像分类方法

    公开(公告)号:CN106257496A

    公开(公告)日:2016-12-28

    申请号:CN201610541508.1

    申请日:2016-07-12

    CPC classification number: G06K9/6256 G06K9/6268

    Abstract: 本发明公开了一种海量网络文本与非文本图像分类方法,首先构建多尺度空间划分网络,然后对训练图像集中的图像,获取图像的多尺度图像块标签信息,并根据构建的多尺度空间划分网络,利用标注好的训练数据集训练多尺度空间划分网络的网络参数,然后利用构建的多尺度空间划分网络以及训练得到的网络参数,对待测试的大规模网络图像进行分类,最终获取图像的分类结果,对图像是否为文本图像做出判决,并获取文本区域在图像中的大致位置。本发明方法文本与非文本图像分类准确率高,且有很高的分类效率。

    文本行的定位方法及装置
    70.
    发明公开

    公开(公告)号:CN106156711A

    公开(公告)日:2016-11-23

    申请号:CN201510190211.0

    申请日:2015-04-21

    Abstract: 本发明公开一种文本行的定位方法及装置,属于计算机视觉技术领域。该方法包括:提取待检测图像中各个像素的至少包括对称性特征向量的特征向量;根据每个像素的特征向量,确定多个潜在位于文本行对称轴上的目标像素,位于文本行对称轴上的像素具有对称性;对各个目标像素进行聚合,得到多个候选文本行区域;滤除非文本行区域得到文本行区域。由于待检测图像中的文本行区域通常具有对称性,因此,基于提取待检测图像中每个像素的对称性特征向量,能够从自然图像中直接定位到待检测图像中的文本行区域,而无需对各个候选字符区域进行组合以得到文本行区域,不仅方式简单,而且不依赖于自然图像中的连通区域,扩大了文本行定位方式的适用范围。

Patent Agency Ranking