-
公开(公告)号:CN108052311B
公开(公告)日:2021-05-18
申请号:CN201711277694.3
申请日:2017-12-06
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G06F8/20
Abstract: 本发明属于自动化计量校准技术领域,具体涉及一种基于通用体系框架的计量信息系统。视图业务层包括功能自检模块、设备检定模块、数据交互模块、数据管理模块和系统管理模块,在检定过程中,用于人机交互的数据显示在软件界面上,每个模块封装成独立的动态链接库;数据层涵盖了与计量测试相关的数据信息,封装了计量检定流程中的数据计算和结果判定算法,制定自动测试原始记录标准、被测设备通讯协议标准和数据库数据存储标准;功能接口层是对各种设备进行面向功能接口的封装;驱动层是所有采集卡驱动、数据源驱动和标准仪器的硬件底层驱动封装,与被测对象连接,完成数据信息的采集。本发明可以实现计量系统的规范化、网络化、智能化的要求。
-
公开(公告)号:CN108170412B
公开(公告)日:2021-04-13
申请号:CN201711277487.8
申请日:2017-12-06
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
Abstract: 本发明属于计量流程控制技术领域,具体涉及一种基于流程控制的综合校准单元,用于实现对测试设备计量检定过程的综合管理。包括驱动调用模块、流程控制模块和数据处理模块;驱动调用模块包括设备驱动库和功能接口程序;流程控制模块包括流程执行引擎、设备校准控制和可复用资源库;数据处理模块包括计量校准信息库、校准数据处理和数据通信接口。本发明将驱动调用、流程控制及数据处理计算三方面分别细化,建立一种基于流程控制的综合校准单元,实现与底层驱动的无关性和自动化计量。
-
公开(公告)号:CN109901460B
公开(公告)日:2021-04-02
申请号:CN201811558171.0
申请日:2018-12-19
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G05B19/042
Abstract: 本发明涉及一种II滚控单元测试仪的校准系统,包括总线测控主机、电学标准源和精密负载箱,且总线测控主机包括总线控制器模块、数字多用表模块和数据通信模块;总线控制器模块通过数据通信模块实现对电学标准源的驱动控制,数字多用表模块实现对II级滚控单元测试仪各通道输出电压、输出电流及传感器供电电压的测量,并按总线控制器模块内置的校准程序采集相应的电压/电流数据,控制电学标准源输出标准电压信号完成对II级滚控单元测试仪各通道位移采集电压的校准;精密负载箱采用多支大功率精密负载电阻构成多路独立的电阻输出通道,用于为II滚控单元测试仪提供多路精密负载电阻实现对II级滚控单元测试仪各通道阻值的校准。
-
公开(公告)号:CN109901085A
公开(公告)日:2019-06-18
申请号:CN201811558168.9
申请日:2018-12-19
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01R31/42
Abstract: 本发明涉及一种UPS电源的校准系统,包括总线测控主机、功率分析仪、程控交流调压器和程控交流负载,且总线测控主机包括总线控制器模块、数字多用表模块、示波器模块和数据通信模块;总线控制器模块通过数据通信模块控制程控交流调压器按总线控制器模块内置的校准程序规定的电源状态输出,然后再控制程控交流负载转换至校准程序规定的负载状态,同时控制功率分析仪完成对被检UPS电源的输入和输出功率的测量;数字多用表模块实现对被检UPS电源的输出电压、电流的准确测量;示波器模块实现对被检UPS电源的输出电压波形及时间的测量;数据通信模块具备多个通信接口,实现总线控制器模块对功率分析仪、程控交流调压器和程控交流负载的数据交互和驱动控制。
-
公开(公告)号:CN109888602A
公开(公告)日:2019-06-14
申请号:CN201910070435.6
申请日:2019-01-25
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
Abstract: 本发明公开了一种全保偏掺镱飞秒光纤光学频率梳系统,所述系统包括光纤振荡器、光纤隔离器、光纤放大器、光纤压缩器、光谱扩展单元和f-2f自参考拍频光路,其中所述光纤振荡器包括第一啁啾光纤布拉格光栅,所述第一啁啾光纤布拉格光栅提供负色散用于所述谐振腔内的色散补偿;所述光纤压缩器包括第二啁啾光纤布拉格光栅,所述第二啁啾光纤布拉格光栅提供负色散用于所述放大后飞秒脉冲的色散补偿,并压缩所述放大后飞秒脉冲的时域宽度。本发明公开的实施例通过使用保偏型啁啾光纤布拉格光栅能够实现掺镱光纤光学频率梳的全光纤化,提高了掺镱光纤频率梳的稳定性和实用性。
-
公开(公告)号:CN109884567A
公开(公告)日:2019-06-14
申请号:CN201811648960.3
申请日:2018-12-30
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01R35/00
Abstract: 本发明公开了一种超低频频率响应分析器相角校准装置,属于专用测试设备计量技术领域,包括输入输出信号调理模块和多组频率及移相模块两部分,所述的输入输出信号调理模块与所述多组频率及移相模块通过测试线缆相连接。本发明公开的超低频频率响应分析器相角校准装置,克服现有校准手段存在频响分析器相角校准无法完全覆盖实际使用的频率及相角范围,与常规频响分析仪校准方法不完全符合的问题,实现伺服单元测试仪频率响应特性的量值溯源,移相准确度优于±0.25°。
-
公开(公告)号:CN109856577A
公开(公告)日:2019-06-07
申请号:CN201811499827.6
申请日:2018-12-09
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01R35/00
Abstract: 本发明涉及一种用于小电流仪表现场自动化校准的装置及方法,其包括校准装置主机和上位机;所述校准装置主机与所述上位机通过数据通信接口连接,所述上位机内预置有校准程序;所述上位机根据预置的校准程序向所述校准装置主机发送控制指令,所述校准装置主机接收到控制指令后执行相应的动作,对被校测试控制台进行校准,实现小电流仪表的现场自动化校准。本发明克服了现有校准手段存在的标准设备体积大、携带不便,校准效率低,等缺陷,提高了针对多型毫安表、微安表等小电流仪表现场校准的自动化水平,实现了小电流仪表现场校准装置的小型化。
-
公开(公告)号:CN109856576A
公开(公告)日:2019-06-07
申请号:CN201811499821.9
申请日:2018-12-09
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01R35/00
Abstract: 本发明涉及一种电学参数检定装置综合自检方法,其包括步骤:设置通道切换卡:通道切换卡包括若干横向切换通道和若干纵向切换通道;检定系统包括多通道的测试板卡;将各通道的测试板卡分别与横向切换通道连接,同时,各通道的测试板卡还分别与纵向切换通道连接;结合通道切换卡的横向和纵向设置,将各通道的测试板卡通过横向切换通道和纵向切换通道进行自检或互检。本发明提高了检定系统的设计效率,减少独立自检功能开发的工作量、周期和成本,综合分析并利用检定系统具备的测试资源,并实现对检定系统进行系统级的自检。
-
公开(公告)号:CN109856470A
公开(公告)日:2019-06-07
申请号:CN201811499810.0
申请日:2018-12-09
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
Abstract: 本发明公开了一种基于自动交互技术的全流程自动化检定方法,属于计量检定技术领域,其步骤如下:(1)设计标准通信协议:设计标准通信协议,规定检定系统和专用测试系统通信格式和内容等信息,实现检定系统和专用测试系统的自动化交互;(2)根据对专用测试系统检定参数的统计和分析,将专用测试系统分为两类,一类是“源”类专用测试系统,一类是“表”类专用测试系统;(3)“源”类专用测试系统的自动化交互检定流程;(4)“表”类专用测试系统的自动化交互检定流程。本发明的基于自动交互技术的全流程自动化检定方法真正实现了全自动化的检定流程,检定过程不仅无需人工录入数据,甚至无需人工值守,尤其是针对目前参数越来越复杂,通道数越来越多的专用测试系统,大大提高了保障部门工作效率。
-
公开(公告)号:CN108152615A
公开(公告)日:2018-06-12
申请号:CN201711319355.7
申请日:2017-12-12
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01R31/00
Abstract: 本发明属于电学检定技术领域,具体涉及一种提高系统安全性的多重电路。包括便携式PXI机箱、PXI控制器、标准源卡、通道切换卡和数据采集卡;便携式PXI机箱包括显示器、触摸板和PXI总线,PXI总线连接PXI控制器、标准源卡、通道切换卡和数据采集卡;PXI控制器安装在便携式PXI机箱中,检定软件安装在PXI控制器中;标准源卡、通道切换卡和数据采集卡安装在便携式PXI机箱中。为确保自动化检定过程的安全性,在标准源到被检设备通道中实施两种安全性设计,首先对标准信号进行预检,确保数值符合要求再切换给被检设备;此外每个信号通道需要两级自动切换,如果任何一级切换错误出现问题,则无法进行后续检定,从而提高电学测量系统检定过程的安全性。
-
-
-
-
-
-
-
-
-