-
公开(公告)号:CN102751655B
公开(公告)日:2014-03-12
申请号:CN201210199736.7
申请日:2012-06-14
Applicant: 北京无线电计量测试研究所
IPC: H01S3/131
Abstract: 本发明涉及一种提高超快激光放大器脉冲能量稳定性的装置,该装置包括激光振荡器、信号发生器、选单控制器、泵浦激光器和激光放大器,该装置还包括与信号发生器、泵浦激光器和激光放大器连接的反馈控制器,用于实时监测激光放大器的脉冲能量,输出反馈信号来调节激光放大器激光腔的起振时刻相对于泵浦激光脉冲的延时。本发明无需改动放大器系统内的任何光路,只需用电路控制延时即可实现对放大激光脉冲能量的控制,实现起来简单易行且性能可靠。
-
公开(公告)号:CN103528994A
公开(公告)日:2014-01-22
申请号:CN201310476184.4
申请日:2013-10-12
Applicant: 北京无线电计量测试研究所
IPC: G01N21/45
Abstract: 本发明公开了一种基于光学相干背散射效应的原子气体浓度检测装置及方法,该原子气体浓度检测装置包括准直激光器(1)、格兰泰勒棱镜(2)、反射镜(3)、消偏振分光棱镜(4)、样品台(5)、傅里叶透镜(6)、检偏器(7)、探测器(8)和计算机(9);准直激光器(1)、格兰泰勒棱镜(2)和反射镜(3)沿横向方向依次设置于同一条直线上;反射镜(3)和消偏振分光棱镜(4)沿纵向方向设置于同一条直线上;样品台(5)设置于消偏振分光棱镜(4)的一侧,在消偏振分光棱镜(4)的另一侧依次设置傅里叶透镜(6)、检偏器(7)和探测器(8);探测器(8)通过数据线与计算机(9)电连接;探测器(8)设置于傅里叶透镜(6)的焦面上。所述原子气体浓度检测装置及方法能够实现原子气体封闭汽室内的原子浓度的无损检测。
-
公开(公告)号:CN103486794A
公开(公告)日:2014-01-01
申请号:CN201310418835.4
申请日:2013-09-13
Applicant: 北京无线电计量测试研究所
IPC: F25D3/10
Abstract: 本发明公开了一种用于超导稳频振荡器的低温装置及其使用方法,该低温装置包括杜瓦(1)、压力表(2)、第一阀门(4)、第二阀门(5)、稳压阀(6)和干泵(7),所述压力表(2)设于所述杜瓦(1)的上端面或侧壁上,所述杜瓦(1)的上端面设有液氦灌注口(8),所述第一阀门(4)、所述第二阀门(5)和所述稳压阀(6)的一端交汇连接为一路后通过真空管(3)与所述杜瓦(1)的上端面连接,所述第一阀门(4)、所述第二阀门(5)和所述稳压阀(6)的另一端交汇连接为一路后通过真空管(3)与所述干泵(7)连接。所述低温装置能够有效地控制杜瓦内的降温速率,其降温速率能够达到1.1K/小时。所述低温装置设有稳压阀,从而能够保持杜瓦内的温度恒定。所述低温装置的温度稳定度可以达到0.0001K。
-
公开(公告)号:CN103475365A
公开(公告)日:2013-12-25
申请号:CN201310418551.5
申请日:2013-09-13
Applicant: 北京无线电计量测试研究所
Abstract: 本发明公开了一种用于超导稳频振荡器的谐振腔及其使用方法,该谐振腔包括谐振腔本体(3)、输入束管(2)、输出束管(5)、输入耦合器(1)、输出耦合器(6)和抽真空束管(4);所述谐振腔本体(3)呈圆筒形,所述谐振腔本体(3)的一端与所述输入束管(2)固定连接,其另一端与所述输出束管(5)固定连接;所述谐振腔本体(3)的半径大于所述输入束管(2)和所述输出束管(5)的半径;所述抽真空束管(4)的一端与所述输出束管(5)的侧壁固定连接;所述输入耦合器(1)设于所述输入束管(2)的自由端;所述输出耦合器(6)设于所述输出束管(5)的自由端。本发明的用于超导稳频振荡器的谐振腔的频率和Q值都明显提高,其频率高达4.9GHz,其Q值高达109。
-
公开(公告)号:CN103472330A
公开(公告)日:2013-12-25
申请号:CN201310418373.6
申请日:2013-09-13
Applicant: 北京无线电计量测试研究所
IPC: G01R31/00
Abstract: 本发明公开了一种超导稳频振荡器的频率稳定度的测量装置,该测量装置包括第一功分器(2)、分频器(3)、第一低通滤波器(4)、相位噪声测试仪(5)、参考源(6)、混频器(7)、第二低通滤波器(8)、第二功分器(9)、第一放大器(10)、第二放大器(11)、频率计数器(12)和计算机(13)。本发明的测量装置能够用于测量超导稳频振荡器的频率稳定度。与现有技术的频率稳定度的测量装置相比,本发明的测量装置的测量分辨率明显提高,其能够测量的频率稳定度提高2个数量级。
-
公开(公告)号:CN110429365B
公开(公告)日:2021-07-30
申请号:CN201910655161.7
申请日:2019-07-19
Applicant: 北京无线电计量测试研究所
Abstract: 本申请公开了一种非金属波导和制造方法,所述非金属波导包括管状的非金属壁,非金属壁内设置有非金属芯,非金属壁和非金属芯之间连接有非金属支架;能够弥补在特殊场合对特殊波导的需求,以适用于电场强度的精确测量,以避免金属材质对电场的影响;其对单位面积上的电场强度进行了汇聚,在避免金属材质对电场的吸收反射等影响的情况下,提高了电场强度的探测灵敏度。
-
公开(公告)号:CN108183709B
公开(公告)日:2021-06-25
申请号:CN201711247133.9
申请日:2017-12-01
Applicant: 北京无线电计量测试研究所
IPC: H03L7/26
Abstract: 本申请公开了一种CPT原子钟频率驯服控制方法及设备,包括:CPT原子钟中包含驯服控制器,该驯服控制器确定所述CPT原子钟的本振频率,并基于所述本振频率分频得到第一秒脉冲信号;接收通过外部端口输入的第二秒脉冲信号;基于所述第一秒脉冲信号和所述第二秒脉冲信号,确定设定时间间隔内的所述CPT原子钟的本振频率的频率偏移量;根据所述频率偏移量,对所述CPT原子钟的本振频率进行驯服调整,实现短时间内驯服CPT原子钟的频率,以抑制CPT原子钟的频率漂移问题,并且通过CPT原子钟内置的驯服控制器实现,结构简单,易于调试,提升了CPT原子钟频率驯服的自动控制和自主运行。
-
公开(公告)号:CN105529605B
公开(公告)日:2019-05-17
申请号:CN201510974419.1
申请日:2015-12-22
Applicant: 北京无线电计量测试研究所 , 中国航空工业集团公司北京长城计量测试技术研究所
Abstract: 本申请实施例提供一种激光处理方法及装置,该方法通过电子时序控制器根据分别获取到的两台脉冲激光发射器的脉冲发射重复频率,确定出向第一脉冲激光发射器和第二脉冲激光发射器发送触发信号的发送频率,并根据发送频率,同步向第一脉冲激光发射器和第二脉冲激光发射器发送触发信号,使两台脉冲激光发射器在接收到触发信号后,同步发射基频脉冲激光,并使得所述基频脉冲激光同步射入非线性介质,以得到所需脉冲激光。与现有技术相比,电子时序控制器可使脉冲发射重复频率不同的两台脉冲激光发射器发射的两束基频脉冲激光同步射入到非线性介质中,从而可有效增加脉冲激光发射器的选择范围,进而可更加容易获取新波段的脉冲激光。
-
公开(公告)号:CN109004499A
公开(公告)日:2018-12-14
申请号:CN201810784081.7
申请日:2018-07-17
Applicant: 北京无线电计量测试研究所
IPC: H01S1/02
Abstract: 本申请公开了一种可调谐微波源,大幅提高微波源的频率稳定度,降低相位噪声,在保证稳定度的前提下对微波源的频率进行调谐。所述可调谐微波源包括微波振荡环路、稳定相位系统、滤波腔、积分器和微波天线。稳定相位系统的输出端与滤波腔、积分器顺序连接。积分器、微波天线与微波振荡环路连接。微波振荡环路用于输出微波信号和通过微波天线向稳定相位系统辐射微波信号。稳定相位系统包括原子气室和光探测器。原子气室用于输入与碱金属气体相互作用的第一光信号和第二光信号、输出通过微波信号辐射相互作用后的原子气室,第一光信号发生autler-townes分裂产生的第三光信号。光探测器用于将第三光信号转换为电信号输出,通过滤波腔和积分器加载至微波振荡环路。
-
公开(公告)号:CN108957776A
公开(公告)日:2018-12-07
申请号:CN201810858843.3
申请日:2018-07-31
Applicant: 北京无线电计量测试研究所
Abstract: 本申请公开了一种汞离子微波钟用光路装置和调节方法。本申请的装置包括汞灯,球面透镜,衍射光栅,汞离子囚禁室。本申请还提供了调节方法,包括以下步骤:将所述汞灯发出的光经过所述球面透镜进行准直;通过所述衍射光栅,将所述被准直的光线分离出波长分别为194nm和253nm的光线;用所述汞离子囚禁室对波长194nm的光线进行泵浦。本申请解决现有汞离子微波钟的系统噪声高的问题。通过波长194nm的泵浦光和波长253nm的杂散光谱进行空间分离,大幅提高了泵浦光和杂散光的抑制比,能够降低系统的噪声,提高探测信号的信噪比。
-
-
-
-
-
-
-
-
-