基于BERT模型的文档关键词抽取方法及装置

    公开(公告)号:CN112883171B

    公开(公告)日:2023-02-03

    申请号:CN202110142917.5

    申请日:2021-02-02

    Abstract: 一种基于BERT模型的文档关键词抽取方法,其包括以下步骤:将文档集合中的每篇文档通过BERT模型进行编码,并提取BERT模型生成的文档语义对每个子词的注意力权重;将子词还原成词语,并将子词的注意力权重聚合为词语的注意力权重;将文档中不同位置的同一词语的注意力权重聚合为词语的与位置无关的注意力权重,记为p(word_weight|doc);计算每个词语在文档集合上的注意力权重,记为p(word_weight|corpus);以及联合p(word_weight|doc)和p(word_weight|corpus),并选取N个最终注意力权重最高的词语作为文档关键词。该方法利用BERT模型提取文档语义表示来计算词语注意力权重分布,最终实现关键词的抽取,兼顾词语频率信息的同时,有效地解决传统无监督算法忽略语义问题,提高了关键词抽取的准确率和召回率。

    基于最小执行代价的深度学习框架间模型转换方法及系统

    公开(公告)号:CN110532291B

    公开(公告)日:2022-07-12

    申请号:CN201910676904.9

    申请日:2019-07-25

    Abstract: 本发明提出一种基于最小执行代价的深度学习框架间模型转换方法及系统,包括:在原有技术的基础上,添加操作转换代价值,同时考虑多个独立操作可以融合的情况,补充融合映射;模型的具体实现体现在构成模型的操作转换上,本阶段依据模型转换映射表,通过动态规划算法得到执行代价最低的转换后模型结构。本发明通过操作融合可以减少多个操作间中间结果的读写过程,从而优化计算性能和存储空间,进而降低转换后模型的执行代价。同时,在有多种融合可选时通过动态规划的算法得到执行代价最小的模型转换方法。

    基于列存数据的流式数据处理方法及系统

    公开(公告)号:CN114185884A

    公开(公告)日:2022-03-15

    申请号:CN202111306456.7

    申请日:2021-11-05

    Abstract: 本发明提出一种基于列存数据的流式数据处理方法及系统,包括:获取待处理的流式数据及其对应的处理任务,基于时间维度将该流式数据切分为批式数据块,该批式数据块中每条数据均包含各自所属窗口的时间戳;根据该时间戳的时间类型,压缩该时间戳,根据压缩结果为该批式数据块中每条数据分配窗口序号,将该批式数据块切分为多个中间数据块,每个中间数据块仅包含窗口序号相同的数据,根据处理任务对每个中间数据块的数据进行预聚合计算,产生预聚合中间状态;根据预设的流式数据时间处理模式,从内部存储提取相应窗口序号的预聚合中间状态并执行与其对应的处理任务,输出各窗口序号的任务处理结果,作为流式数据处理结果。

    基于深度学习的集成实体链接方法及系统

    公开(公告)号:CN111062214B

    公开(公告)日:2021-11-19

    申请号:CN201911166642.8

    申请日:2019-11-25

    Abstract: 本发明提出一种基于深度学习的集成实体链接方法及系统。首先选取某一个局部相似度模型,对待链接文档给出初步的链接结果。随后,根据每个指称词相应候选实体集合的局部相似度得分,候选实体集合生成方法本发明不加以限制,可采用现有任意候选实体生成方法;局部相似度得分即所选用的局部相似度模型对每个候选实体计算出来的相似度得分,按照下述方法计算每个指称词的有效候选实体集合表达向量。结合全局推断算法,利用指称词所在的文档的文本信息和同一文档中指称词之间的相互关联性完成实体链接任务。本发明利用同一文档中指称词之间的相互关联丰富指称词的语义信息,能够更好地辨别指称词的含义,达到良好的实体链接性能。

    一种用于倾斜数据的流式计算引擎运行方法及系统

    公开(公告)号:CN110990059B

    公开(公告)日:2021-11-19

    申请号:CN201911191154.2

    申请日:2019-11-28

    Abstract: 本发明提出一种用于倾斜数据的流式计算引擎运行方法及系统,包括:获取包含倾斜数据的用户作业,并将该用户作业转换为表示该用户作业的有向无环图,根据该有向无环图中算子的业务处理逻辑,将该有向无环图中节点划分为有状态算子和无状态算子;将全部状态算子包装为有状态任务后输入有状态数据流,将全部无状态算子包装为无状态任务后输入无状态数据流;将该无状态数据流中无状态任务复制发送至任意计算节点,得到无状态处理结果;将该有状态数据流中有状态任务转换为包含键和值的数据记录,将包含相同键的数据记录分配至相同计算节点,得到有状态处理结果,集合该无状态处理结果和有状态处理结果作为该用户作业的运行结果。

    一种复杂实体抽取方法、装置、介质及系统

    公开(公告)号:CN110502742B

    公开(公告)日:2021-11-05

    申请号:CN201910625736.0

    申请日:2019-07-11

    Abstract: 本发明涉及一种复杂实体抽取方法,用于迭层膨胀卷积神经网络,该神经网络包括字级别迭层膨胀卷积神经网络层和词级别迭层膨胀卷积神经网络层,该方法包括:语料生成步骤,用于构建实体语料集,以采集语料,并对该语料进行自定义格式标注,形成训练集、测试集和/或验证集;字级别向量生成步骤,用于对该语料进行预训练,生成字向量,并将该字向量输入该字级别迭层膨胀卷积神经网络层,得到字级别向量;自定义特征提取步骤,用于从自由文本中提取所述自定义格式标注的特征;实体抽取步骤,将所述字级别向量进行拼接后,与所述词级别特征输入该词级别迭层膨胀卷积神经网络层,对所述自由文本进行复杂实体的抽取。该方法提高了实体抽取的精度和效率。

    基于压缩图的数据存储方法、存储介质、存储装置和服务器

    公开(公告)号:CN110389953B

    公开(公告)日:2021-10-29

    申请号:CN201910508926.4

    申请日:2019-06-12

    Abstract: 本发明涉及一种基于压缩图的数据存储方法、系统和存储介质,该方法包括:步骤100,生成点表逻辑定义,根据该逻辑定义构建点表,并向该点集中插入数据;步骤200,生成边表逻辑定义,根据该逻辑定义构建边表,从所述点表中选择与该边表相关联的点表,并向所述边表中插入数据;步骤300,设置和执行压缩图定义命令,生成所述压缩图的建图逻辑,设置函数获取与所述压缩图定义关联的所述边表,形成边集聚合组,并生成与所述压缩图定义关联的所述点表的代理结构;步骤400,设置和执行压缩图重置命令,根据所述压缩图的建图逻辑构建所述压缩图。本方法降低了多次建图与建多类图的开销,增加了图构建的灵活性与表示性,减少了重复建图的排序工作量。

    基于深度学习的集成实体链接方法及系统

    公开(公告)号:CN111062214A

    公开(公告)日:2020-04-24

    申请号:CN201911166642.8

    申请日:2019-11-25

    Abstract: 本发明提出一种基于深度学习的集成实体链接方法及系统。首先选取某一个局部相似度模型,对待链接文档给出初步的链接结果。随后,根据每个指称词相应候选实体集合的局部相似度得分,候选实体集合生成方法本发明不加以限制,可采用现有任意候选实体生成方法;局部相似度得分即所选用的局部相似度模型对每个候选实体计算出来的相似度得分,按照下述方法计算每个指称词的有效候选实体集合表达向量。结合全局推断算法,利用指称词所在的文档的文本信息和同一文档中指称词之间的相互关联性完成实体链接任务。本发明利用同一文档中指称词之间的相互关联丰富指称词的语义信息,能够更好地辨别指称词的含义,达到良好的实体链接性能。

    一种自动生成深度学习框架间操作映射的方法及系统

    公开(公告)号:CN110533162A

    公开(公告)日:2019-12-03

    申请号:CN201910677639.6

    申请日:2019-07-25

    Abstract: 本发明提出一种自动生成深度学习框架间操作映射的方法及系统,包括:根据原深度学习框架和目标深度学习框架间的操作转换规则,抽取框架间操作转换的基本共性,根据基本共性构建转换关系,将转换关系作为基类存储于操作转换的初始描述文件中;获得原深度学习框架下支持的操作集合,遍历操作集合,为每个操作构建继承基类的子类,判断操作集合中操作除了基类中的基本转换规则外是否具有特殊属性,若是则补充特殊属性至子类,构成完备描述文件,否则直接保存子类,构成完备描述文件;将完备描述文件输入至编译器,得到操作转换规则,根据操作转换规则将原深度学习框架下待转换的操作转换为目标深度学习框架下的操作。

Patent Agency Ranking