一种异步队列任务的报错处理方法及系统

    公开(公告)号:CN116501533A

    公开(公告)日:2023-07-28

    申请号:CN202310759103.5

    申请日:2023-06-26

    Abstract: 本发明提供了一种异步队列任务的报错处理方法及系统,该方法包括以下步骤:S1:将诊断文本进行分组预处理,并存入消息队列中;S2:从消息队列中逐组取出消息,并通过API接口压入第一数据库中;S3:异步任务开启,从第一数据库获取队列消息,解析后送入到抽取模型中执行关系抽取任务,若执行失败,则向第二数据库写入识别键值;S4:继续获取队列消息,并判断识别键值是否与当前消息的键对应,若对应,则当前消息跳过关系抽取任务;S5:重复S3‑S4步骤,直到消息处理完毕。本发明所提供的一种异步队列任务的报错处理方法及系统,通过获取异常任务的任务ID+时间戳作为唯一标识,从而判断后续任务是否可以直接跳过不处理,进而达到减少消息处理时间的目的。

    一种大模型检索增强生成的自适应切片的文档切分方法

    公开(公告)号:CN119903834A

    公开(公告)日:2025-04-29

    申请号:CN202411887946.4

    申请日:2024-12-20

    Abstract: 本发明公开了一种大模型检索增强生成的自适应切片的文档切分方法,涉及大模型检索增强生成技术领域,方法包括:获取待切分文档,并对所述待切分文档按照标题类型进行切分,得到至少一组原始切块;根据任一原始切块对应的信息密度以及主题变化度,计算该原始切块的最优切分数量;根据所述最优切分数量对该原始切块进行切分处理。本发明先将文档按照层次标题进行切分,然后计算层次标题下的信息密度和主题变化度,以层级标题为单位,自动计算该层级标题下的最优切分大小,来指导文档的自适应切分,以提高后续检索和生成任务的效果。

    基于融合注意力与动态卷积的机械图片数据集生成方法

    公开(公告)号:CN119888401A

    公开(公告)日:2025-04-25

    申请号:CN202411912230.5

    申请日:2024-12-24

    Abstract: 本发明公开了基于融合注意力与动态卷积的机械图片数据集生成方法,涉及大模型技术领域,方法包括:获取至少一张待识别机械图像,将所有待识别机械图像输入至大模型处理模块,生成每张待识别机械图像对应的机械类型以及标注信息;将所述机械类型、所述标注信息以及对应的待识别机械图像进行关联,生成一组数据信息,将所有组数据信息进行整合生成机械图片数据集;所述大模型处理模块包括多模态融合层、动态注意力机制层以及融合注意力与动态卷积的时空增强网络模块。本发明能够通过大模型处理模块可以自动从原始机械图像中提取、整理并标注出机械图片数据集,提高数据集生成的效率和准确性。

    基于多模态学习的目标分类方法、装置、设备及介质

    公开(公告)号:CN119884817A

    公开(公告)日:2025-04-25

    申请号:CN202411912711.6

    申请日:2024-12-24

    Abstract: 本发明涉及基于多模态学习的目标分类方法、装置、设备及介质,该方法包括:将待处理数据输入至预训练的分类模型中,得到待处理数据对应的分类结果;分类模型包括输入层用于接收待处理数据,深度可分离卷积层用于对每种数据进行逐通道卷积,得到每种数据对应的第一特征图,对每种数据对应的第一特征图进行逐点卷积,得到每种数据对应的第二特征图,基于每种数据对应的第一特征图和第二特征图,得到每种数据对应的第三特征图;多尺度特征融合层用于对所有数据对应的第三特征图进行融合处理得到融合特征图;输出层用于根据融合特征图得到分类结果。通过本发明的方法,可减少计算量并保持精度,从而可使得基于分类模型得到的分类结果更加准确。

    一种大模型检索增强生成中的RAG必要性判断方法

    公开(公告)号:CN119760080A

    公开(公告)日:2025-04-04

    申请号:CN202411870255.3

    申请日:2024-12-18

    Abstract: 本发明公开了一种大模型检索增强生成中的RAG必要性判断方法,涉及大模型检索增强生成技术领域,方法包括:获取用户在社交网站或社交媒体评论区或对话日志中提出的当前问题信息;针对所述当前问题信息,确定所述用户对应的事实倾向性分数;根据所述事实倾向性分数与预设倾向性分数之差,确定是否需要调用RAG对当前问题信息进行辅助回答。本发明通过对当前问题信息进行事实倾向性分数的计算可以有效的识别当前问题信息是否需要利用RAG的方式引用外部知识,通过判断RAG必要性来减少不必要的资源浪费,提升推理速度并避免因为RAG引入的知识而增加模型的混乱。

    一种基于跨域迁移学习的命名实体识别方法和装置

    公开(公告)号:CN117610574B

    公开(公告)日:2024-04-26

    申请号:CN202410090398.6

    申请日:2024-01-23

    Abstract: 本申请提供了一种基于跨域迁移学习的命名实体识别方法和装置,所述方法包括:在单独锁定源域命名实体识别模型的每一模型结构层时,基于源域命名实体识别模型的指标分数的变化情况确定出待锁定结构层;基于t‑SNE算法进行关键样本选取,得到训练文本数据;将待锁定结构层锁定,使用训练文本数据对源域命名实体识别模型进行训练,得到目标域命名实体识别模型;将目标域的医学文本数据输入到目标域命名实体识别模型,得到目标域命名实体识别模型对医学文本数据实体识别的结果。通过所述方法和装置,以解决迁移学习时对目标域样本数量的大量需求,实现有效的精准标注,用最少的样本来最大化的提升模型效果,以提升模型对命名实体识别的准确性。

    一种基于强化学习的医疗诊断结果确定方法和装置

    公开(公告)号:CN117766137A

    公开(公告)日:2024-03-26

    申请号:CN202410194645.7

    申请日:2024-02-22

    Abstract: 本申请提供了一种基于强化学习的医疗诊断结果确定方法和装置,首先,将用户的当前问诊信息输入到预先构建好的命名实体识别模型中,确定出所述当前问诊信息中存在的多个关键实体;然后,将多个所述关键实体输入到预先训练好的实体关系抽取模型中,从多个所述关键实体中确定出存在实体关系的至少一个关键实体对;基于多个所述关键实体、至少一个所述关键实体对以及相对应的检查项目名称构建所述当前问诊信息对应的至少一个特征数据;最后,将至少一个特征数据输入到辅助诊断模型中,确定出用户当前的诊断结果。通过所述方法及装置,快速为医生提供更加准确的诊断结果,提高医疗效率和诊断准确率。

    基于计算特征网络的精准医学信息结论生成方法

    公开(公告)号:CN117763140A

    公开(公告)日:2024-03-26

    申请号:CN202410196621.5

    申请日:2024-02-22

    Abstract: 本发明涉及一种基于计算特征网络的精准医学信息结论生成方法,该方法包括:步骤S10、获取医学论文的文本信息;步骤S20、构建基于要部分和结论部分的训练集和验证集;步骤S30、将训练集输入计算网络中进行结论输出模型训练;步骤S40、在利用完成训练的结论输出模型进行结论输出得到输出结果后,基于用户对所述输出结果的修正,优化所述结论输出模型。本发明,能够更好的基于医学论文的摘要部分得到对应的结论,减少人工阅读的繁琐工序,帮助用户得到逻辑更严密、表达清晰、更直观的结论,有利于提高效率。

Patent Agency Ranking