一种基于提示学习模型的传染病预警直报方法和系统

    公开(公告)号:CN115631868A

    公开(公告)日:2023-01-20

    申请号:CN202211461585.8

    申请日:2022-11-17

    Abstract: 本发明提供了一种基于提示学习模型的传染病预警直报方法和系统,涉及医疗信息化技术领域,包括如下步骤:获取不同医院的原始诊断疾病数据,提取所述原始诊断疾病数据中的诊断描述;基于所述诊断描述构建诊断描述的集合;获取不同传染病的规范名称,基于所述规范名称构建传染病名称集合;基于语言模型对诊断描述的集合中的每个诊断描述与传染病名称集合中的每个规范名称进行比对,判断是否匹配,当任一诊断描述与任一规范名称判断为匹配时上报预警。避免了碍于各个地区的医生的诊断业务能力不同,对传染病进行个性化的诊断描述或自定义的诊断描述,导致传染病不能够被及时发现,提高了识别传染病的准确度。

    应用于医学领域的词语标准化方法、装置和电子设备

    公开(公告)号:CN115062614A

    公开(公告)日:2022-09-16

    申请号:CN202210939116.6

    申请日:2022-08-05

    Abstract: 本公开的实施例公开了应用于医学领域的词语标准化方法、装置和电子设备。涉及医疗服务领域。该方法的一具体实施方式包括:获取待标准化词语;将待标准化词语输入至预先训练的语言处理模型,生成待标准化词语的空间向量;基于待标准化词语、空间向量,计算待标准化词语与预设标准词语库中至少一个标准词语中每个标准词语之间的相似度,得到相似度集合;基于相似度集合,从预设标准词语库中选择出目标标准词语。该实施方式可以通过生成待标准化词语的空间向量,计算与预设标准词语库中每个标准词语之间的相似度集合,选择出待标准化词语对应的目标标准词语。提高了医学词语标准化的效率和准确度,为医疗数据被应用提供了重要帮助。

    用于构建医学术语平台的方法、装置、电子设备和介质

    公开(公告)号:CN114974490A

    公开(公告)日:2022-08-30

    申请号:CN202210589095.X

    申请日:2022-05-27

    Abstract: 本公开的实施例公开了用于构建医学术语平台的方法、装置、电子设备和介质。该方法的一具体实施方式包括:选取数据源,采集医学词语集合;对上述医学词语集合进行数据处理,得到数据处理完成的医学词语集合;基于上述数据处理完成的医学词语集合,建立各个医学词语之间的关系;将关系建立完成的医学词语集合确定为目标医学术语集合,以及将上述目标医学术语集合发布至目标医学术语平台。该实施方式实现了医学信息命名规范、统一,即使有多个数据源也可以轻松处理得到符合要求的医学术语集合,构建的医学术语平台也有助于医学问诊、医学预警、医学指南推荐等医疗相关服务。

    一种医学知识图谱质量评估方法及系统

    公开(公告)号:CN118035678A

    公开(公告)日:2024-05-14

    申请号:CN202410142915.X

    申请日:2024-02-01

    Abstract: 本发明涉及一种医学知识图谱质量评估方法及系统;该方法通过用户在前端发起对目标定义型医学知识图谱进行检测的Api请求,该Api请求通过http接口形式返回至后端服务器,后端服务器在接收该Api请求后开始调用知识图谱检测系统进行检测,基于形式检测、概念异常检测和关系一致性检测,以便对目标定义型医学知识图谱的状态和不足之处进行筛选,生成相应的质量检测结果,后端服务器将生成的质量检测结果再次通过HTTP接口形式返回至前端,用于展示质量检测结果,以供用户查看,通过查看质量检测结果,用户能够对目标定义型医学知识图谱的状态和不足之处认识和了解,以便下一步的修正,从而提高了定义型医学知识图谱内知识的准确性和可靠性。

    一种跨病种迁移时病种数据结构化的方法及系统

    公开(公告)号:CN117809792B

    公开(公告)日:2024-05-03

    申请号:CN202410221624.X

    申请日:2024-02-28

    Abstract: 本发明涉及一种跨病种迁移时病种数据结构化的方法及系统;该方法包括:S1、构建问题库;S2、输出目标病种BERT语言模型和其它病种BERT语言模型;S3、过滤出目标病种句;S4、将目标病种句输入至目标病种BERT语言模型中,输出目标病种句向量;S5、得到目标病种已标注语料;S6、构造训练数据,将训练数据输入至初始分类模型中进行训练,得到训练分类模型;S7、得到目标病种结构化数据。本发明通过设置问题库,将病历和问题库结合输入至训练分类模型中,根据训练分类模型中的预测结果来提供结构化信息,从而得到较为精确和一致的病历数据整合结果,通过小批量样本标注以实现大批量样本标注的技术效果,能够满足跨病种迁移时的需求。

    一种医学影像检查结果分析方法及装置

    公开(公告)号:CN117711635A

    公开(公告)日:2024-03-15

    申请号:CN202410162478.8

    申请日:2024-02-05

    Abstract: 本发明公开了一种医学影像检查结果分析方法及装置,通过深度学习技术、构建改进Trie树和微调后的疾病名称提取模型分别识别出第一类疾病分析实体、第二类疾病分析实体和第三类疾病分析实体,最终将三种结果进行融合后,再根据疾病语料库映射到ICD编码中,通过查询疾病专业知识库中的ICD编码,从而返回对应的疾病专业知识,解决了患者并不能很好的从检查结果中获取到更多关于疾病的信息的问题,帮助患者更好的了解自身病情,理性看待病情,有利于患者协助医生做出有针对性的诊疗,提高诊疗效率。

    基于mq端口和redis数据库的模型训练方法及系统

    公开(公告)号:CN117349676B

    公开(公告)日:2024-03-12

    申请号:CN202311650060.3

    申请日:2023-12-05

    Abstract: 本发明提供了基于mq端口和redis数据库的模型训练方法及系统,该方法包括以下步骤:将现有医疗数据的数据格式进行统一,并作为训练集;利用训练集对预测模型进行训练;利用预测模型输出预测结果,将预测结果和审核结果存储于数据库并进行对比;若预测结果进行过修改,则将审核结果作为正例数据,预测结果作为负例数据,并将所述正例数据和对应的负例数据作为一条样本存储于积存数据库中;将积存数据库中的样本作为自训练集输入预测模型,对预测模型重新训练,并将积存数据量重置为零。本发明将预测模型的输出结果进行存储以及发送人工审核,同时利用审核结果以及预测结果的对比,生成新的训练集,并对原预测模型进行重新训练。

Patent Agency Ranking