-
公开(公告)号:CN111814853A
公开(公告)日:2020-10-23
申请号:CN202010591742.1
申请日:2020-06-24
Applicant: 北京邮电大学
IPC: G06K9/62
Abstract: 本发明实施例提供了一种数据选择偏差下的去相关聚类方法及装置,其中,方法包括:获取存在偏差的多张图像,作为样本集;基于样本集,联合优化加权后聚类算法和去相关正则项,得到最优加权后聚类算法,其中,最优加权后聚类算法是通过多次计算加权后聚类算法得到的,加权后聚类算法是通过使用去相关正则项学习得到的各样本权重,对聚类算法进行加权得到的;各样本权重为通过使用去相关正则项,对样本集中的各图像,学习本次各样本权重;通过在本次加权后聚类算法中包含的本次聚类中心和簇不是首次聚类中心和簇,并且本次聚类中心和簇与上次聚类中心和簇之间的差异小于阈值时,得到最优加权后聚类算法,以确定图像不受偏差影响的聚类中心和簇。