一种冷原子系统自旋压缩态的制备方法

    公开(公告)号:CN113014257B

    公开(公告)日:2022-05-20

    申请号:CN202110201423.X

    申请日:2021-02-23

    Abstract: 本发明公开一种冷原子系统自旋压缩态的制备方法,包括:提供一两分量自旋系统,其包括二维势阱,所述二维势阱具有其原子自旋态依赖于原子相互作用的能级结构;向所述二维势阱施加拉曼光,以使所述二维势阱中由原子相互作用等效产生的自旋相互作用不为零;记录来自二维势阱的自旋波动信号,从所述自旋波动信号中确定自旋压缩的变化情况;根据所述自旋压缩的变化情况,测量自旋压缩参数最小时的自旋压缩性质,以产生自旋压缩态。本发明的优点是:实现简单,突破量子系统测量极限的限制,为提高量子精密测量精度提供新的方法,使得自旋压缩态更加稳定。

    一种波形不确定度评定方法

    公开(公告)号:CN113625033A

    公开(公告)日:2021-11-09

    申请号:CN202110783220.6

    申请日:2021-07-12

    Abstract: 本发明公开一种波形不确定度评定方法,解决现有方法运算量大、难以工程实现的问题。所述一种波形不确定度评定方法,包含以下步骤:对每次校准得到的频域校准结果计算频域协方差矩阵;将所述频域协方差矩阵分块重新排列,得到分块矩阵,分块原则是所述频域校准结果的实部协方差矩阵为一块、虚部协方差矩阵为一块、实部在前虚部在后的协方差矩阵为一块、虚部在前实部在后的协方差矩阵为一块,所述分块矩阵为实对称正定矩阵;对所述分块矩阵进行降维处理,得到频域协方差降维矩阵。本发明可实现波形不确定度的快速评定。

    一种腔耦合原子系统制备自旋压缩态的方法

    公开(公告)号:CN113014256A

    公开(公告)日:2021-06-22

    申请号:CN202110201409.X

    申请日:2021-02-23

    Abstract: 本发明公开一种腔耦合原子系统制备自旋压缩态的方法,包括:提供一腔耦合原子系统,所述腔耦合原子系统具有其原子自旋态依赖于原子相互作用的能级结构;向所述腔耦合原子系统施加偏置磁场或者激光,以使原子能量移动,产生非厄米自旋相互作用;记录来自所述腔耦合原子系统的自旋波动信号,从所述自旋波动信号中确定自旋压缩的变化情况;根据所述自旋压缩的变化情况,测量自旋压缩参数小于1时的自旋压缩性质,以产生自旋压缩态。本发明的优点是:实验可操作性强,利用腔与原子相互作用,易于操控原子系统状态,实现的非厄米作用不仅未破坏自旋压缩态,反而维持了自旋压缩效应稳定存在的反直觉物理机制,该方法应用范围广泛。

    基于光学相干背散射效应的原子气体浓度检测装置及方法

    公开(公告)号:CN103528994B

    公开(公告)日:2016-01-20

    申请号:CN201310476184.4

    申请日:2013-10-12

    Abstract: 本发明公开了一种基于光学相干背散射效应的原子气体浓度检测装置及方法,该原子气体浓度检测装置包括准直激光器(1)、格兰泰勒棱镜(2)、反射镜(3)、消偏振分光棱镜(4)、样品台(5)、傅里叶透镜(6)、检偏器(7)、探测器(8)和计算机(9);准直激光器(1)、格兰泰勒棱镜(2)和反射镜(3)沿横向方向依次设置于同一条直线上;反射镜(3)和消偏振分光棱镜(4)沿纵向方向设置于同一条直线上;样品台(5)设置于消偏振分光棱镜(4)的一侧,在消偏振分光棱镜(4)的另一侧依次设置傅里叶透镜(6)、检偏器(7)和探测器(8);探测器(8)通过数据线与计算机(9)电连接;探测器(8)设置于傅里叶透镜(6)的焦面上。所述原子气体浓度检测装置及方法能够实现原子气体封闭汽室内的原子浓度的无损检测。

    基于二次谐波平衡探测的时间抖动延迟测量系统及方法

    公开(公告)号:CN105043562A

    公开(公告)日:2015-11-11

    申请号:CN201510378387.9

    申请日:2015-07-01

    Abstract: 本发明公开了一种基于二次谐波平衡探测的时间抖动延迟测量装置,该装置包括第一半透半反镜、二次谐波产生介质、第二半透半反镜、时间延迟线、第一光电探头、第二光电探头、差分电路、第三半透半反镜、第一反射镜、第二反射镜、第一聚焦镜、第二聚焦镜、第三反射镜、第一待测脉冲输入接口、第二待测脉冲输入接口和差分信号输出接口。本发明所述技术方案利用二次谐波平衡探测机制,根据无延迟时电信号输出为0的特点,对时间抖动延迟进行测量,达到时间抖动延迟测量分辨力高的要求,有利于高精度时间同步系统的应用。

    一种基于微处理器的光子计数测量方法、系统、设备及存储介质

    公开(公告)号:CN119880166A

    公开(公告)日:2025-04-25

    申请号:CN202411805385.9

    申请日:2024-12-09

    Abstract: 本申请提供一种基于微处理器的光子计数测量方法、系统、设备及存储介质,不需要依赖使用大型外设仪器测量,实现光子计数测量。该方法应用于微处理器,微处理器包括主定时器和从定时器,包括:设定主定时器的计数周期;在计数周期开始时,主定时器触发从定时器开始对光电倍增管输出的脉冲信号计数;在计数周期结束时,主定时器触发从定时器停止对光电倍增管输出的脉冲信号计数,并且触发从定时器输出计数周期的计数值,以及清空计数值,等待下一个计数周期开始;其中,光电倍增管输出的脉冲信号是光电倍增管接收光子信号并将光子信号转化为电信号时产生的。

    一种镱离子光钟钟跃迁频率锁定方法及系统

    公开(公告)号:CN119481926A

    公开(公告)日:2025-02-18

    申请号:CN202411449995.X

    申请日:2024-10-17

    Abstract: 本申请公开了一种镱离子光钟钟跃迁频率锁定方法及系统,解决了激光频率难以稳定锁定在镱离子钟跃迁频率上的问题。一种镱离子光钟钟跃迁频率锁定方法,包含步骤:确定激光的初始频率和两端频率间隔相同的第一频率和第二频率;激光频率分别固定在第一频率和第二频率进行钟跃迁,判断离子的状态;确定第一频率与第二频率的跃迁概率;第一频率和第二频率的跃迁概率对比结果作为输入信号,确定反馈信号来调节激光频率。本申请提出了一种镱离子光钟钟激光频率锁定系统,通过优化锁定技术和反馈控制,确保激光频率稳定在钟跃迁频率上,从而提高光钟的整体性能。

    一种柔性传输线和传输方法
    58.
    发明公开

    公开(公告)号:CN118508027A

    公开(公告)日:2024-08-16

    申请号:CN202410691194.8

    申请日:2024-05-30

    Abstract: 本申请公开了一种柔性传输线和传输方法,解决了现有技术芯片之间的传输线折叠状态下受辐射损耗大的问题。一种柔性传输线,包含上表面接地板、导体带、介质基板和下表面接地板。所述导体带设置在介质基板上表面,且长度横跨介质基板上表面在介质基板两侧形成第一端口和第二端口,用于传输微波。两个所述上表面接地板沿导体带长度方向分别设置在导体带两侧,且板面紧贴介质基板上表面。所述上表面接地板远离导体带一侧为梳齿状结构。所述下表面接地板覆盖介质基板的下表面。本申请所设计的传输线在平坦和形变下的电磁特性较稳定,表明该结构可应用在高频、低损耗和小型化的柔性电路中。

    一种超稳窄线宽激光器系统和耦合调节方法

    公开(公告)号:CN114300918B

    公开(公告)日:2024-01-23

    申请号:CN202111425877.1

    申请日:2021-11-26

    Abstract: 本申请公开了一种超稳窄线宽激光器系统,包括顺序连接的激光器、光纤隔离器、声光调制器、光纤耦合器、电光调制器、环形器。所述光纤耦合器旁路输出稳定激光。所述环形器输出端口返回的光经第三端口输出至第一光电探测器,获得误差信号。所述环形器输出端口的光经光纤耦合镜、光学参考腔输出至第二光电探测器。所述光纤耦合镜固定在调整架上,所述调整架配置为在垂直于光传播方向的平面上平移、且在沿光传播方向上改变水平偏离角、垂直偏离角,使耦合到光学参考腔的光强最大。本申请还包含所述超稳窄线宽激光器系统的调节方法。本申请解决可移动超稳激光器组成复杂、调节操作不便的问题。

    光纤型激光功率量子控制装置、方法、激光发射设备

    公开(公告)号:CN116031745A

    公开(公告)日:2023-04-28

    申请号:CN202211734595.4

    申请日:2022-12-30

    Abstract: 本说明书公开了一种光纤型激光功率量子控制装置、方法、激光发射设备,以提高激光功率的抗干扰能力和稳定度。本发明装置包括:第一支路,配置为对激光器输出的激光,经过声光调制器输出0级衍射光,经光纤隔离器后输出待稳功率激光;第二支路为反馈调节支路,将第一支路中的待稳功率激光作为监测信号,导入原子钟使原子钟的输出频率随之改变,基于该输出频率与给定输出频率之间的偏差,通过反馈控制方法对第一支路中激光偏振态进行调整,以稳定输出激光的功率。本发明中,使用全光纤结构的量子控制装置具有结构简单、体积小巧、成本低、重量轻、实验装置难度低、免于调试空间光路、不易受外界杂散光影响的优势,并且提高了激光功率稳定度。

Patent Agency Ranking