一种未知网络协议识别方法及系统

    公开(公告)号:CN103297427B

    公开(公告)日:2016-01-06

    申请号:CN201310189079.2

    申请日:2013-05-21

    Abstract: 本发明涉及一种未知网络协议识别方法,包括:步骤1,以待识别的网络数据包为输入,并将每个网络数据包表征为可用于分类的特征向量;步骤2,以获得的特征向量为输入,形成特征向量数据集,利用面向支持向量机的主动学习方法对该特征向量数据集进行学习,获得针对待测网络协议的分类器;步骤3,利用得到的分类器,对待识别的网络数据包的协议属性做出判别。对应该方法,本发明还给出了一种未知网络协议识别系统,包括数据包建模模块、分类器构建模块和识别模块。本发明采用主动学习方法,可使用较少的已标记样本达到较优的学习效率,从而有效地降低了学习过程中标记的样本数目,能够从混杂的网络流量中准确识别所分析的网络协议。

    基于特征压缩与特征选择的歪斜场景文字识别方法

    公开(公告)号:CN104598881A

    公开(公告)日:2015-05-06

    申请号:CN201510014950.4

    申请日:2015-01-12

    CPC classification number: G06K9/346 G06K9/4604 G06K9/6223 G06K9/6269

    Abstract: 本发明涉及一种基于特征压缩与特征选择的歪斜场景文字识别方法,其步骤包括:在文字区域的每个像素点上提取CHOG特征;根据CHOG特征的差异程度确定字符级的聚类数量;对CHOG特征进行聚类得到压缩后的字符级特征;将压缩过的特征合并,再次进行聚类,生成初始的视觉特征词典;建立视觉特征直方图描述符;训练线性支持向量机,对直方图描述符中特征的重要性进行排序,选出若干最重要的特征作为最终的词典;再次计算样本的直方图描述符,训练多类径向基函数支持向量机,作为最终的文字分类器以对歪斜场景文字进行识别,得到识别结果。本发明能够在克服特征点检测法失效的同时,保证很高的识别准确率和召回率。

Patent Agency Ranking