-
公开(公告)号:CN110674807A
公开(公告)日:2020-01-10
申请号:CN201910720688.3
申请日:2019-08-06
Applicant: 中国科学院信息工程研究所
Abstract: 本发明提供一种基于半监督与弱监督学习的曲形场景文字检测方法,用于减少曲形文字检测算法所需要的人工标注,同时让整个算法框架更加简洁,利用少量精确的像素级标注数据及大量的无标注或由水平包围框标注的数据,就能训练得到一个准确的曲形文字检测器,能够对场景曲形文字进行准确检测。
-
公开(公告)号:CN103297427B
公开(公告)日:2016-01-06
申请号:CN201310189079.2
申请日:2013-05-21
Applicant: 中国科学院信息工程研究所
IPC: H04L29/06
Abstract: 本发明涉及一种未知网络协议识别方法,包括:步骤1,以待识别的网络数据包为输入,并将每个网络数据包表征为可用于分类的特征向量;步骤2,以获得的特征向量为输入,形成特征向量数据集,利用面向支持向量机的主动学习方法对该特征向量数据集进行学习,获得针对待测网络协议的分类器;步骤3,利用得到的分类器,对待识别的网络数据包的协议属性做出判别。对应该方法,本发明还给出了一种未知网络协议识别系统,包括数据包建模模块、分类器构建模块和识别模块。本发明采用主动学习方法,可使用较少的已标记样本达到较优的学习效率,从而有效地降低了学习过程中标记的样本数目,能够从混杂的网络流量中准确识别所分析的网络协议。
-
公开(公告)号:CN104598881A
公开(公告)日:2015-05-06
申请号:CN201510014950.4
申请日:2015-01-12
Applicant: 中国科学院信息工程研究所
CPC classification number: G06K9/346 , G06K9/4604 , G06K9/6223 , G06K9/6269
Abstract: 本发明涉及一种基于特征压缩与特征选择的歪斜场景文字识别方法,其步骤包括:在文字区域的每个像素点上提取CHOG特征;根据CHOG特征的差异程度确定字符级的聚类数量;对CHOG特征进行聚类得到压缩后的字符级特征;将压缩过的特征合并,再次进行聚类,生成初始的视觉特征词典;建立视觉特征直方图描述符;训练线性支持向量机,对直方图描述符中特征的重要性进行排序,选出若干最重要的特征作为最终的词典;再次计算样本的直方图描述符,训练多类径向基函数支持向量机,作为最终的文字分类器以对歪斜场景文字进行识别,得到识别结果。本发明能够在克服特征点检测法失效的同时,保证很高的识别准确率和召回率。
-
-