-
公开(公告)号:CN113222032A
公开(公告)日:2021-08-06
申请号:CN202110546001.6
申请日:2021-05-19
Applicant: 西安电子科技大学
Abstract: 本发明提出了一种基于自注意图像编码的无参考图像质量评价方法,其步骤为:获取训练样本集和测试样本集;构建基于自注意图像编码的无参考图像质量评价网络模型;对基于自注意图像编码的无参考图像质量评价网络模型进行迭代训练;获取无参考图像质量评价结果。本发明所构建的无参考图像质量评价网络模型中的自注意图像编码器通过对每个样本低维映射的特征进行自注意编码,全连接层对每个特征进行自注意编码得到的包含图像整体注意力信息和细节的深度感知特征进行回归,以获取每个样本对应的质量预测分数,避免了现有技术中所获取的感知特征缺乏足够深度的图像整体注意力信息和细节对评价精度的影响,有效地提高了无参考图像的质量评价精度。
-
公开(公告)号:CN112950454A
公开(公告)日:2021-06-11
申请号:CN202110099911.4
申请日:2021-01-25
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种基于多尺度语义匹配的图像风格迁移方法,包括:获取内容图像训练集和风格图像训练集,形成多组内容‑风格图像对;通过深度卷积网络分别对内容‑风格图像对中的内容图像和风格图像提取多尺度深度特征;对内容图像和风格图像的多尺度深度特征进行多尺度语义匹配,获得重建后的深度特征;将重建后的深度特征通过解码器合成风格迁移后的重建图像;迭代更新解码器的参数直至解码器收敛;将待处理的内容图像和风格图像依次经过多尺度深度特征提取、多尺度语义匹配及收敛更新后的解码器合成,获得风格迁移后的图像。该方法能够显著地保持输入内容图像的结构完整性与连贯性,同时准确迁移输入风格图像对应语义部位的风格。
-
公开(公告)号:CN109410127B
公开(公告)日:2020-09-01
申请号:CN201811082938.7
申请日:2018-09-17
Applicant: 西安电子科技大学
Abstract: 本发明涉及一种基于深度学习与多尺度图像增强的图像去噪方法,包括:对待处理的原始图像进行多尺度图像信息增强,得到增强后图像;利用图像去噪卷积神经网络模型对所述增强后图像进行处理,得到去噪后图像。该图像去噪方法增加了多尺度增强信息的预处理过程,提升了图像像素之间的对比度,图像灰度级变得均衡,且图像的灰度级范围变宽,从而能够得到图像的重要细节和纹理,将该增强图像输入到后续的卷积神经网络模型中,能够实现去噪图像视觉效果的增强。
-
公开(公告)号:CN107392213B
公开(公告)日:2020-04-07
申请号:CN201710602696.9
申请日:2017-07-21
Applicant: 西安电子科技大学
Abstract: 一种基于深度图模型特征学习的人脸画像合成方法。其步骤为:(1)生成样本集合;(2)生成图像块集合;(3)提取深度特征;(4)求解人脸画像重构块系数;(5)重构人脸画像块;(6)合成人脸画像。本发明使用深度卷积网络提取人脸照片块的深度特征,利用马尔科夫图模型求解深度特征图系数与人脸画像块重构系数,使用人脸画像块重构系数对人脸画像块加权求和得到重构人脸画像块,拼接重构人脸画像块得到合成人脸画像。本发明使用从深度卷积网络中提取的深度特征来代替图像块的原始像素值信息,对光照等环境噪声具有更好的鲁棒性,能合成质量极高的人脸画像。
-
公开(公告)号:CN106408001B
公开(公告)日:2019-10-11
申请号:CN201610742554.8
申请日:2016-08-26
Applicant: 西安电子科技大学
IPC: G06K9/62
Abstract: 本发明公开了一种基于深度核哈希的感兴趣区域快速检测方法,主要解决现有图像中感兴趣区域检测方法检测精度低和效率低的问题。其实现步骤是:在训练过程中,将待训练数据集分为多类,输入到深度哈希监督学习网络框架中,得到相应的哈希编码,最终根据标签信息矩阵微调各网络参数,直至学习效果最佳;在测试过程中,输入的测试图像经过预处理过程,通过上述已训练好的深度核哈希网络框架,得到二进制编码;根据决策函数判断该图像的感兴趣区域位置并加以标记,完成对感兴趣区域的检测和识别。本发明能有效增强图像中感兴趣区域的检测分析性能,提高感兴趣区域的检出率和系统框架的运行效率,可应用于医学乳腺图像肿块的快速检测和识别。
-
公开(公告)号:CN106778714B
公开(公告)日:2019-08-13
申请号:CN201710129838.4
申请日:2017-03-06
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种基于非线性特征和模型合并的LDA人脸识别方法。其步骤为:(1)划分人脸数据样本集;(2)提取人脸非线性特征集;(3)划分特征组;(4)构建人脸特征模型库;(5)获得全局人脸特征模型;(6)求解线性判别式分析LDA的投影矩阵;(7)投影人脸非线性特征集;(8)采用K最近邻分类器,对投影后的人脸特征进行分类识别。本发明采用非线性特征提取的方法,可以提取到更准确的人脸特征获得更高的识别率,同时,本发明采用特征分组构建模型与合并获得全局模型的方法,避免大矩阵特征分解,计算时间短,模型可重复利用,更适用于大数据场景和分布式场景。
-
公开(公告)号:CN107045722B
公开(公告)日:2019-07-30
申请号:CN201710190220.9
申请日:2017-03-27
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种融合静态信息与动态信息的视频序列分割方法,主要解决现有紫外极光图像分割方法由于不考虑动态特征,造成分割结果不准确的问题。其实现过程为:1).构建紫外极光序列数据库;2).利用紫外极光图像的静态特征在空域上对构建的紫外极光序列进行分割,得到紫外极光序列的空域分割结果;3).利用紫外极光图像的动态特征在时域上对构建的紫外极光序列进行分割,得到紫外极光序列的时域分割结果;4).融合步骤2)和3)的结果,得到最终的分割结果。本发明由于将静态特征与动态特征相结合,大大提升了紫外极光图像的分割精度,可用于目标识别。
-
公开(公告)号:CN109711465A
公开(公告)日:2019-05-03
申请号:CN201811603384.0
申请日:2018-12-26
Applicant: 西安电子科技大学
IPC: G06K9/62
Abstract: 本发明公开一种基于多尺度学习MLL和相邻时间节点联合注意力机制特征重建ASCA-FR的图像字幕生成方法,主要解决现有技术中注意力模型在某时刻的输出仅考虑图像的特征集合和前一时刻的单词向量,只使用交叉熵损失函数训练网络所带来的生成字幕描述不准确、表述不流畅的问题。本发明的具体步骤如下:(1)生成自然图像测试集和训练集;(2)提取特征向量;(3)构建ASCA-FR网络;(4)训练ASCA-FR网络;(5)获得自然图像字幕;本发明利用MLL损失函数对构建的ASCA-FR网络进行训练,使得生成的字幕描述准确且表述流畅。
-
公开(公告)号:CN105913456B
公开(公告)日:2019-03-26
申请号:CN201610224972.8
申请日:2016-04-12
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种区域分割的视频显著性检测方法,主要解决现有视频显著性检测方法检测准确率低的问题,其步骤是:1.对视频帧进行线性迭代聚类,得到超像素块,提取超像素块静态特征;2.利用变分光流法,得到超像素块的动态特征;3.将静态特征和动态特征进行融合得到特征矩阵,再对特征矩阵进行K‑means聚类;4.对每一类分别进行线性回归模型训练,得到回归模型,5.用回归模型重建测试集样本与显著性程度的映射关系得到测试集超像素块的显著值,进而得到测试序列的显著图。本发明相较于传统的视频显著性算法,增强了特征空间和时间表征能力,降低了光照对检测效果的影响,可用于视频目标跟踪、视频分割的前期预处理。
-
公开(公告)号:CN108764084A
公开(公告)日:2018-11-06
申请号:CN201810475657.1
申请日:2018-05-17
Applicant: 西安电子科技大学
IPC: G06K9/00
CPC classification number: G06K9/00718 , G06K9/00744
Abstract: 本发明公开了一种基于空域分类网络和时域分类网络融合的视频分类方法,主要解决现有视频分类方法准确率低的问题。其实现方案为1)获取训练集和测试视频;2)从训练集中提取视频帧;3)使用训练集对卷积神经网络进行训练;4)对从训练集中提取的视频帧提取特征;5)使用训练集对空域分类网络进行训练;6)使用训练集对时域分类网络进行训练;7)使用训练后的空域分类网络和时域分类网络对测试视频进行分类,并对空域分类网络和时域分类网络的分类结果进行融合,完成对视频的分类。本发明相比现有视频分类方法有效提高了分类准确率,可用于视频的特征提取和识别。
-
-
-
-
-
-
-
-
-