-
公开(公告)号:CN114858859A
公开(公告)日:2022-08-05
申请号:CN202210464098.0
申请日:2022-04-29
Applicant: 西安交通大学
IPC: G01N25/72
Abstract: 本发明公开一种镜面反射的激光红外热成像无损检测系统及检测方法,系统由激光器、激光束整形镜头组、红外热像仪、反射镜面以及图像采集和处理单元组成。检测方法为:激光器发出激光束,通过激光束整形镜头组将激光束转换为均匀激光热源,照射至被测对象正面以及反射镜面上。反射镜面将均匀激光热源反射至被测对象背光部分进行加热并反射其加热后发射的红外线,通过红外热像仪采集被测对象正面部分和背光部分发射的红外信息,并转换为温度信号传输至图像采集和处理单元得到被测对象表面温度图像。通过分析温度图像实现对被测对象的缺陷检测与识别;本发明检测系统能够通过一次照射对薄管试件进行全方位的检测并提高加热均匀性,提升检测效率。
-
公开(公告)号:CN113433212A
公开(公告)日:2021-09-24
申请号:CN202110706287.X
申请日:2021-06-24
Applicant: 西安交通大学 , 新疆维吾尔自治区特种设备检验研究院
IPC: G01N27/90 , G01N27/9013
Abstract: 抗干扰强的均匀场激励方向性涡流探头及检测方法,该探头含激励部分和检出部分,激励部分由矩形骨架和多匝导线均匀绕制而成矩形激励线圈;检出部分由两个轴线与待测金属构件法向垂直且具有相同绕向的盘式小线圈组成,以矩形激励线圈下表面的中间导线为对称轴对称分布。检测时,向矩形激励线圈通入激励信号,线圈下方的待测金属构件感应出相对均匀的涡流场;由于矩形激励线圈足够大,因此无缺陷时两个检出线圈的检出信号近似相同;有缺陷时,缺陷会对均匀涡流场产生扰动,取两个盘式小线圈的差分信号为目标信号,一方面可增强检测灵敏度,同时可有效减弱提离噪声的影响。通过旋转探头,分析扫查方向和扫查信号的关系,实现缺陷的方向性识别。
-
公开(公告)号:CN108896459B
公开(公告)日:2020-10-23
申请号:CN201810550687.4
申请日:2018-05-31
Applicant: 西安交通大学
IPC: G01N15/06
Abstract: 基于交变磁场脉冲红外的磁性水凝胶磁性粒子浓度检测方法,首先对含不同浓度磁性粒子的磁性水凝胶进行交变磁场激励,并利用红外相机记录磁性水凝胶表面温度变化时间历程,得到磁性水凝胶表面温升速率‑磁性粒子浓度标定曲线;然后根据磁性水凝胶表面温升速率‑磁性粒子浓度标定曲线确定磁性粒子浓度‑磁性水凝胶表面温升速率模型;最后将待测磁性水凝胶表面温升速率代入磁性粒子浓度‑磁性水凝胶表面温升速率模型即可确定待测磁性水凝胶的磁性粒子浓度;本发明能够为磁性水凝胶中的磁性粒子浓度的定量检测提供可靠的方法,具有无损、高效、非接触、检测范围大、检测精度高等优点,可广泛应用于磁性水凝胶磁性粒子的浓度检测中。
-
公开(公告)号:CN108613646B
公开(公告)日:2019-08-06
申请号:CN201810527185.X
申请日:2018-05-28
Applicant: 新疆维吾尔自治区特种设备检验研究院 , 西安交通大学
IPC: G01B17/02
Abstract: 一种针对粗糙表面金属测厚的阵列电磁超声共振探头及方法,该探头包括永磁体、激励线圈、检出线圈阵列组以及柔性材料骨架;激励线圈在永磁体的底部中心位置;检出线圈阵列组由多个检出线圈组成,多个检出线圈环绕分布在激励线圈周围构成检出线圈阵列;永磁体产生较强的恒定磁场,当激励线圈通入脉冲激励电流时,试件的上表面会产生涡流,涡流在永磁体的恒定磁场作用下会产生洛伦兹力,引发质点振动,进而在试件上表面产生超声波;超声波在导电材料中传播,遇到粗糙的金属下表面便会被反射出多束超声回波,反射回来的多束超声回波分别被环绕分布在激励线圈周围的阵列检出线圈接收,经过信号处理可计算出导电材料粗糙表面处的厚度分布。
-
公开(公告)号:CN109490410A
公开(公告)日:2019-03-19
申请号:CN201811593972.0
申请日:2018-12-25
Applicant: 西安交通大学
Abstract: 本发明公开了残余应力作用下的应力腐蚀裂纹多频涡流定量评价方法,首先采用直流电位检测和涡流检测方法建立残余应力与材料电导率、磁导率的对应关系,然后利用多频涡流检测方法测取应力腐蚀裂纹周围各个选定测试点处的残余应力值,并明确不同裂纹尺寸的应力腐蚀裂纹附近区域残余应力分布规律,最后采用反问题研究策略,将多频涡流检测实验数据作为目标信号,考虑裂纹附近残余应力分布对材料电导率、磁导率的影响,实现对应力腐蚀裂纹尺寸的定量无损评价;本发明方法可以对残余应力作用下的应力腐蚀裂纹进行准确有效的定量评估,具有操作简单,易实现,数据量小的优点,可以广泛应用于实际工程结构部件真实状态下应力腐蚀裂纹尺寸的定量无损评价,具有较大的工程应用价值。
-
公开(公告)号:CN109472117A
公开(公告)日:2019-03-15
申请号:CN201811595941.9
申请日:2018-12-25
Applicant: 西安交通大学
IPC: G06F17/50
Abstract: 本发明公开了一种核电站结构裂纹附近区域残余应力分布定量无损评价方法,首先利用涡流检测探头对处于不同应力水平的标准拉伸试件进行多频涡流检测,获得多个频率涡流检测阻抗与应力值的对应关系,然后在待测试件上选取一条包括应力腐蚀裂纹的封闭曲线,在该曲线上选取一系列测试点进行多频涡流检测,通过涡流检测阻抗与应力值的对应关系测取各测试点的残余应力值,最后利用有限元软件,建立应力腐蚀裂纹的数值模型,将各测试点的残余应力值作为边界条件,计算得应力腐蚀裂纹附近的残余应力分布;本发明方法可以准确、快速地评价裂纹附近应力分布,具有操作简单,易实现,数据量小的优点,可以广泛应用于核电站结构裂纹附近区域应力分布的定量无损评估。
-
公开(公告)号:CN108362770B
公开(公告)日:2019-01-18
申请号:CN201810046698.9
申请日:2018-01-17
Applicant: 西安交通大学
IPC: G01N27/90
Abstract: 本发明公开了一种碳纤维增强复合材料管件结构缺陷内检探头及检测方法,所述探头包括环形磁芯,固定于环形磁芯上的激励线圈和周向磁场梯度传感器阵列,环形磁芯的径向截面为“凹”字形,周向磁场梯度传感器阵列在环形磁芯的“凹”字形凹槽内沿环形磁芯周向均匀排布,激励线圈均匀绕制于环形磁芯上;本发明还提供上述探头的检测方法,能够对碳纤维增强复合材料管件分层、剥离等结构缺陷进行快速、高精度检测,具有重要的工程应用价值。
-
公开(公告)号:CN108051648B
公开(公告)日:2018-12-18
申请号:CN201711258187.5
申请日:2017-12-01
Applicant: 西安交通大学 , 新疆维吾尔自治区特种设备检验研究院
IPC: G01R27/08 , G01R33/022
Abstract: 一种基于直流电位和涡流检测法的材料电磁属性测量方法,该方法实验装置由直流电位法装置和涡流检测法装置组成;实现该方法时,首先通过直流电位法装置中的恒流源给试件施加恒定电流激励,用纳伏表采集电压信号,通过计算可得到试件的电导率;然后通过涡流检测法装置中的激励线圈给试件施加激励,再用检出线圈检出电压信号;由于检出线圈的电压信号与试件的电导率和磁导率均相关,所以在由直流电位法测得试件电导率的前提下就可以对涡流检出信号通过共轭梯度法反演求得材料的磁导率;相较于传统的试件电导率和磁导率的测量方法,本发明方法能达到同时测量磁性材料电导率和磁导率的目的,而且激励频率可调,具有广泛的应用前景。
-
公开(公告)号:CN108375590A
公开(公告)日:2018-08-07
申请号:CN201810057249.4
申请日:2018-01-19
Applicant: 西安交通大学
IPC: G01N22/02
CPC classification number: G01N22/02
Abstract: 本发明提出一种万向节表面铸造缺陷的在线无损检测方法。该方法的检测系统主要包括微波矢量网络分析仪、多路复用器、矩形波导探头和固定万向节与矩形波导探头的夹具。该方法主要利用矩形波导探头对标准样件进行微波扫频测量,采集微波线性扫频信号,确定微波检测万向节的判废标准;对待测万向节进行微波扫频测量,采集微波线性扫频信号并进行傅里叶变换,得到倒频谱及光深度,以此修正微波线性扫频信号,消除矩形波导探头与万向节表面间距微小变动造成的检测误差;利用修正后的频谱以及标定的万向节判废标准,确定万向节是否存在表面铸造缺陷。该方法能够快速精准的检测万向节表面铸造缺陷、分检出质量未达标的万向节,具有重要的工程应用价值。
-
公开(公告)号:CN108362770A
公开(公告)日:2018-08-03
申请号:CN201810046698.9
申请日:2018-01-17
Applicant: 西安交通大学
IPC: G01N27/90
CPC classification number: G01N27/904
Abstract: 本发明公开了一种碳纤维增强复合材料管件结构缺陷内检探头及检测方法,所述探头包括环形磁芯,固定于环形磁芯上的激励线圈和周向磁场梯度传感器阵列,环形磁芯的径向截面为“凹”字形,周向磁场梯度传感器阵列在环形磁芯的“凹”字形凹槽内沿环形磁芯周向均匀排布,激励线圈均匀绕制于环形磁芯上;本发明还提供上述探头的检测方法,能够对碳纤维增强复合材料管件分层、剥离等结构缺陷进行快速、高精度检测,具有重要的工程应用价值。
-
-
-
-
-
-
-
-
-