-
公开(公告)号:CN109919320B
公开(公告)日:2022-04-01
申请号:CN201910060989.8
申请日:2019-01-23
Applicant: 西北工业大学
Abstract: 本发明提供了一种基于语义层次结构的Triplet网络学习方法,构建语义层次结构,层次化Triplets采样,之后层次化Triplet网络训练,再利用bilinear特征增强,从而更新网络的参数。本发明既利用了语义知识指导网络层次化的区分样本结构,又利用了层次间的关系让网络关注到更有效的Triplets对,充分挖掘了batch中样本的有效性,从而提升了网络学习到的深度特征的可分性。同时,本发明还利用bilinear函数对图像细节进行了增强,并与Triplet联合训练,进一步提升了网络的性能。
-
公开(公告)号:CN110929624B
公开(公告)日:2021-09-14
申请号:CN201911124037.4
申请日:2019-11-18
Applicant: 西北工业大学
Abstract: 本发明提供了一种基于正交损失函数的多任务分类网络的构建方法,构建的多任务分类网络模拟了人类学习过程,用深度卷积神经网络作为隐藏层模拟人的大脑进行深度特征提取,使用树分类器作为任务相关的输出层进行递进式分类,将识别过程构成不同的学习任务。本发明使不同任务得到的特征更加符合各自的需求,使分类器在完成粗分类任务时使同一粗类的深度特征更加聚合,而在完成细分类任务时,不同细类的深度特征更加离散,对不同分类任务的任务输出层特征进行区分,使得不同层级的分类器得到更加匹配不同分类任务的特征,去掉无用特征,从而提高分类准确率。
-
公开(公告)号:CN110909785B
公开(公告)日:2021-09-14
申请号:CN201911124067.5
申请日:2019-11-18
Applicant: 西北工业大学
Abstract: 本发明提供了一种基于语义层级的多任务Triplet损失函数学习方法,为数据库构建语义层级网络,语义层级进行triplets采样,对多任务Triplet网络训练,利用树分类器进行多任务分类。本发明针对Triplet网络多层次化训练的问题,提出了一种将语义层级网络与Triplet相结合的损失函数,利用语义知识指导网络层次化的区分样本结构,学习到一种包含语义层级信息且泛化性更强Triplet特征,有效的运用在多任务学习中,提升了不同语义层次下的特征可分性。同时,研究了一种新的层级化采样方法,使得网络能够挖掘到更有效的hard triplets,最终提升网络的性能。
-
公开(公告)号:CN107169946B
公开(公告)日:2020-04-03
申请号:CN201710279800.5
申请日:2017-04-26
Applicant: 西北工业大学
IPC: G06T5/50
Abstract: 本发明提供了一种基于非负稀疏矩阵与超球面彩色变换的图像融合方法,涉及图像融合领域,本发明通过使用一种非负矩阵分解算法对全色和多光谱图像共同提取亮度分量,然后对亮度分量进行建模计算并调整,再使用超球面彩色变换对图像进行融合,得到融合结果图像,本发明利用NMF算法将全色图像和多光谱图像结合起来提取I分量,在解决光谱匹配性差的问题的同时,提高了亮度分量的提取精度,通过利用全色图像及其滤波后的图像对I分量进行调整,更好的融入了空间细节信息,最大限度地防止了光谱畸变,使得新型卫星的融合结果图像在空间细节信息融入方面和光谱特性保持方面都较现有算法有很大的提高,主观评价与客观分析结果能够达到一致。
-
公开(公告)号:CN108122219B
公开(公告)日:2019-10-18
申请号:CN201711231984.4
申请日:2017-11-30
Applicant: 西北工业大学
Abstract: 本发明提供了一种基于联合稀疏与非负稀疏的红外与可见光图像融合方法,涉及图像融合技术领域,对红外与可见光图像得到样本矩阵,并得到融合的均值结果,对去均值样本进行联合稀疏表示得到融合的去均值结果,将融合的均值结果与去均值结果结合,对红外图像进行显著性检测得到显著图,并得到红外图像的目标区域图,即可得到目标增强的红外与可见光图像融合结果,本发明在基于联合稀疏表示的融合方法基础上,引入了基于非负稀疏表示的分类融合思想,能够将公有特征与特有特征分别提取,完全保留源图像中的特有特征,能够有效指示特征类别,对均值采用分类融合的融合规则,更有效保留红外目标与背景细节,二者综合运用能够获得更优的融合结果。
-
公开(公告)号:CN110188811A
公开(公告)日:2019-08-30
申请号:CN201910434561.5
申请日:2019-05-23
Applicant: 西北工业大学
Abstract: 本发明提供了一种基于赋范梯度特征与卷积神经网络的水下目标检测方法,该方法首先利用二值化的赋范梯度特征对水下目标特征进行描述,并通过二值化编码简化特征描述,降低后续分类器计算复杂度;再利用两级级联的排序SVM(Ranking SVM)算法对目标候选窗口进行逐级筛选,提供含有目标可能性较大的候选区域位置,实现对目标的粗略定位。其次,为了能够对目标区域的种类进行判断以及获得目标区域更加准确的位置描述,采用卷积神经网络和SVM分类器对水下目标进行分类并表示出目标属于某个物体类别的得分,最后使用线性回归模型得到每个类别的位置修正后的目标建议窗口。本发明的方法加速了水下目标候选区域的提取速度,提高了算法的准确性。
-
公开(公告)号:CN109800757A
公开(公告)日:2019-05-24
申请号:CN201910006843.5
申请日:2019-01-04
Applicant: 西北工业大学
IPC: G06K9/32
Abstract: 为了解决大幅度相机移动下的多文字追踪,本发明提出了一种基于布局约束的视频文字追踪方法。该方法的输入为视频和视频帧的文字检测结果,输出为文字追踪后的轨迹信息。首先,通过初始视频帧的检测结果进行文字轨迹的初始化,然后将上一帧的文字轨迹与当前帧的检测结果送入本发明的追踪方法中进行文字轨迹的更新。文字轨迹更新的核心是将当前帧检测到的文字区域对应到已有的文字轨迹,该过程可以视为一种数据匹配问题。本发明针对此问题设计一个新的数据匹配代价函数,通过求解代价函数的得到最佳匹配结果。经过重复轨迹更新过程直到视频处理结束,最终得到文字追踪结果。本发明在数据匹配代价函数中引入布局约束,通过文字区域间的整体外观结构进行文字追踪,可以有效避免因为相机大幅度运动导致错误追踪结果,具有更好的追踪效果。
-
公开(公告)号:CN106204508B
公开(公告)日:2018-12-14
申请号:CN201610503045.X
申请日:2016-06-30
Applicant: 西北工业大学
IPC: G06T5/50
Abstract: 本发明提供了一种基于非负稀疏矩阵的WorldView‑2遥感全色与多光谱图像融合方法,涉及图像融合领域,通过使用一种非负矩阵分解算法对多光谱图像进行亮度分量提取,然后使用HCS变换对图像进行融合,得到融合图像,在细节注入和光谱保持方面都得到了一定的提升,最终得到了高质量的融合结果,由于对I分量的提取采用了NMF方法,提高了亮度分量的提取精度,较对比算法更合理,使得WV‑2卫星融合图像整体质量较高,在细节信息融入和光谱保持方面都有一定的提高,主观评价和客观分析结果能够达到一致,得到的融合图像可视性更好,图片更清晰。较传统的遥感全色与多光谱图像融合方法更有优势。
-
公开(公告)号:CN108122219A
公开(公告)日:2018-06-05
申请号:CN201711231984.4
申请日:2017-11-30
Applicant: 西北工业大学
Abstract: 本发明提供了一种基于联合稀疏与非负稀疏的红外与可见光图像融合方法,涉及图像融合技术领域,对红外与可见光图像得到样本矩阵,并得到融合的均值结果,对去均值样本进行联合稀疏表示得到融合的去均值结果,将融合的均值结果与去均值结果结合,对红外图像进行显著性检测得到显著图,并得到红外图像的目标区域图,即可得到目标增强的红外与可见光图像融合结果,本发明在基于联合稀疏表示的融合方法基础上,引入了基于非负稀疏表示的分类融合思想,能够将公有特征与特有特征分别提取,完全保留源图像中的特有特征,能够有效指示特征类别,对均值采用分类融合的融合规则,更有效保留红外目标与背景细节,二者综合运用能够获得更优的融合结果。
-
公开(公告)号:CN107341786A
公开(公告)日:2017-11-10
申请号:CN201710466497.X
申请日:2017-06-20
Applicant: 西北工业大学
IPC: G06T5/50
Abstract: 本发明提供了一种小波变换与联合稀疏表示的红外与可见光图像融合方法,涉及图像融合领域,首先对源图像进行DWT变换,分解成低频子带与高频子带系数,并用滑窗策略将低频子带系数分解成矩阵,再针对上述分解的低频子带矩阵学习字典,其次,分别融合低频子带系数和高频子带系数,最后通过DWT逆变换重构出融合图像,本发明既能有效地稀疏表示源图像的显著细节特征,又能多尺度地融合图像细节信息,即很好地保留了红外图像的目标信息与可见光图像的细节、轮廓等背景信息,提高了目标的识别能力,有利于后续处理系统对信息的提取与使用,较传统的小波变换融合方法以及现有的基于联合稀疏表示的融合方法均具有优势。
-
-
-
-
-
-
-
-
-