-
公开(公告)号:CN118332584A
公开(公告)日:2024-07-12
申请号:CN202410748751.5
申请日:2024-06-12
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于机器学习的技术领域,具体涉及面向分布式机器学习的数据安全治理方法、装置、电子设备和存储介质。该方法包括:节点获取其相邻节点在当前迭代中的局部参数,利用即时可靠分数函数计算相邻节点的即时可靠分数,以为相邻节点构建可靠性模型,设定可靠性模型更新规则,在每次迭代中基于该规则对可靠性模型的可靠指数或不可靠指数进行更新;将更新后的可靠性模型代入Beta分布,获取相邻节点的可靠程度并以此构建可靠节点集合;基于可靠节点集合中所有可靠相邻节点的参数计算当前迭代中节点的聚合结果,结合梯度下降更新节点的参数,将更新后的参数发送至其每个相邻节点。本发明可消除拜占庭攻击的影响,确保学习模型的准确性。
-
公开(公告)号:CN117454381B
公开(公告)日:2024-06-04
申请号:CN202311800375.1
申请日:2023-12-26
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F18/214 , G06F21/55
Abstract: 本发明属于信息安全的技术领域,更具体地,涉及一种非独立同分布数据下面向联邦学习的渐进性攻击方法。所述方法服务器端随机初始化一个全局模型作为第一轮全局模型,下发到各个客户端,攻击者选用该全局模型作为攻击模型;所述客户端收到全局模型后在本地执行训练形成局部模型,并将局部模型上传到服务器端;所述服务器端将局部模型更新聚合,形成新一轮全局模型,继续下发至客户端;在每轮训练中,客户端使用接收到的全局模型更新其局部模型并在本地数据集上进行训练;结束训练。本发明解决了现有技术中攻击者为隐藏其攻击操作导致控制模型性能逐渐下降并导致数据非独立同分布联邦学习中的攻击检测变得更加困难的问题。
-
公开(公告)号:CN117196070B
公开(公告)日:2024-01-26
申请号:CN202311474649.2
申请日:2023-11-08
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明属于异构数据下的联邦学习的技术领域,更具体地,涉及一种面向异构数据的双重联邦蒸馏学习方法及装置。所述方法包括全局知识蒸馏和局部知识蒸馏,全局知识蒸馏包括利用全局生成器生成全局伪数据,将全局伪数据输入局部模型和初始聚合模型,并根据模型输出结果对初始聚合模型微调,得到全局模型;局部知识蒸馏包括利用局部生成器生成局部伪数据,将局部伪数据输入局部模型和全局模型,并根据模型输出结果更新局部生成器,再利用更新后的局部生成器生成新的局部伪数据,利用新的局部伪数据更新局部模型。本发明保障数据异构环境下产
-
公开(公告)号:CN116822661A
公开(公告)日:2023-09-29
申请号:CN202311100506.5
申请日:2023-08-30
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 一种基于双服务器架构的隐私保护可验证联邦学习方法,属于人工智能的技术领域。包括:密钥生成中心、客户端、聚合服务器和辅助服务器;本发明采用中国剩余定理CRT对梯度进行压缩,并使用Paillier同态加密算法对本地梯度进行加密;同时,为避免单个服务器被攻陷成为恶意服务器,进而会威胁数据安全,本发明将聚合梯度和聚合哈希标签的计算过程分别分配给了聚合服务器AS和辅助服务器SS两个不同的服务器。本发明通过辅助服务器SS所聚合的哈希标签来辅助客户端验证聚合服务器AS聚合结果的正确性,为联邦学习训练模型的准确性提供了有效保障。
-
公开(公告)号:CN115442160B
公开(公告)日:2023-02-21
申请号:CN202211388174.0
申请日:2022-11-08
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 一种差分隐私保护下的网络化系统数据隐蔽攻击检测方法,属于信息安全的技术领域,所述检测方法,首先,对网络化系统进行建模并设计基于系统噪声参数的攻击检测机制;然后,根据已知系统信息,为攻击者设计最优数据隐蔽攻击策略;接着,在保障网络化系统敏感数据隐私的情形下,通过隐私噪声调度机制确定隐私噪声添加的时刻,并实现最优系统控制性能。基于以上设计,可在保护系统数据隐私性以及保障系统达到最优运行性能的基础上,对可能发生的数据隐蔽攻击进行有效检测。
-
-
-
-