网络电话服务端的识别方法及装置、系统、电子设备

    公开(公告)号:CN115914056A

    公开(公告)日:2023-04-04

    申请号:CN202110914688.4

    申请日:2021-08-10

    Abstract: 本申请提供一种网络电话服务端的识别方法及装置、系统、电子设备,该方法包括:获取SIP流量,对SIP流量进行分析,获得目的IP信息;根据目的IP信息,对目标服务端的通信端口进行扫描,查找开放服务的目标端口;与开放服务的目标端口建立连接,并向开放服务的目标端口发送HTTP报文;根据HTTP报文的响应消息,确定目标服务端是否为网络电话服务端。由此可以高效地过滤出网络中大部分的VoIP运营平台信息,比传统的被动解析方式需要的资源更少且更加灵活,比传统的主动方式更加高效、目的性更强。在消耗少量资源的情况下,可以高效的进行定向分析,大大提高整体分析的高效性。

    语音溯源取证方法及装置、设备及存储介质

    公开(公告)号:CN115083422A

    公开(公告)日:2022-09-20

    申请号:CN202210859678.X

    申请日:2022-07-21

    Abstract: 本公开涉及一种语音溯源取证方法及装置、设备及存储介质,所述方法包括:本提取待测试语音的至少两种不同的声学特征;对提取的待测试语音的至少两种不同的声学特征进行融合,得到第一融合声学特征;基于预先训练的语音溯源取证模型,从所述第一融合声学特征中提取帧级别的算法指纹特征,对帧级别的算法指纹特征进行池化平均,根据池化平均得到的特征加权平均向量和加权标准差向量计算段级别的算法指纹特征,以基于段级别的算法指纹特征预测出待测试语音的生成算法;将预测出的待测试语音的生成算法作为语音溯源取证结果,通过提取算法指纹,不仅可以判断音频的真实性,而且可以进一步溯源取证,得到虚假音频的生成来源。

    语言模型的训练方法、NLP任务处理方法及装置

    公开(公告)号:CN113420123A

    公开(公告)日:2021-09-21

    申请号:CN202110705729.9

    申请日:2021-06-24

    Abstract: 本申请提供了一种语言模型的训练方法、NLP任务处理方法及装置,包括:获取训练样本集;训练样本集包括新任务的第一任务标签、新任务的多个第一训练文本和每个第一训练文本的第一文本标签、至少一个旧任务中每个旧任务的第二任务标签;复制语言模型得到教师语言模型,将语言模型作为学生语言模型;将第二任务标签输入至教师语言模型中,生成旧任务对应的多个第二训练文本和每个第二训练文本的第二文本标签;将第一任务标签、第二任务标签、第一训练文本和第二训练文本输入至学生语言模型中,生成第一预测文本、第一预测结果、第二预测文本和第二预测结果,对学生语言模型进行训练。根据本申请实施例,能够解决相关技术中存储资源占用大的问题。

    一种大规模数据流中电信欺诈风险识别方法

    公开(公告)号:CN109274836B

    公开(公告)日:2021-06-15

    申请号:CN201811287123.2

    申请日:2018-10-31

    Abstract: 本发明公开了一种大规模数据流中电信欺诈风险识别方法,属于数据挖掘与机器学习和商务智能等领域。从呼叫记录数据库中筛选高风险被叫用户和主叫用户作为分析对象,构建欺诈被叫索引数据库,提取各个索引对应的显著特征;采用二级级联分类模型,得到每个被叫号码的攻击风险值;保留每个高风险被叫号码最近的滑动窗口异常得分的最大值,作为各自的序列风险值;构造被叫号码与主叫号码的通联关系二部图,计算每个被叫号码的通联风险值;借助逻辑回归模型,对每个被叫号码的攻击风险、序列风险和通联风险进行融合,得出每个被叫号码各自的综合风险值。本发明最终的综合风险值具有较高的稳定性和可解释性,实现较高的分类和检测效率。

    基于无监督学习的诈骗呼叫序列检测方法

    公开(公告)号:CN110059889B

    公开(公告)日:2021-05-28

    申请号:CN201910344174.2

    申请日:2019-04-26

    Abstract: 本发明提供了基于无监督学习的诈骗呼叫序列检测方法,包括:构造主叫呼叫序列和呼叫二部图;在呼叫二部图中进行随机游走过程,推断各主叫号码对应节点的低维嵌入表示向量;获取各被叫号码的唯一标识,以主叫号码对应节点的低维嵌入表示向量以及第M个被叫号码对应的唯一标识为神经网络的输入,以第M+1个被叫号码对应的唯一标识为输出,训练获得神经网络预测模型;获取待检测主叫呼叫序列中主叫号码对应节点的低维嵌入表示向量以及各被叫号码对应的唯一标识,并输入所述神经网络预测模型,若得到的预测唯一标识与实际唯一标识的误差大于设定阈值,则判断主叫号码为诈骗号码。本发明中提出的方法容易实现并行化计算,可以实现较高的检测效率。

Patent Agency Ranking