-
公开(公告)号:CN114706972A
公开(公告)日:2022-07-05
申请号:CN202210275509.1
申请日:2022-03-21
Applicant: 北京理工大学
IPC: G06F16/34 , G06F16/35 , G06F40/30 , G06F40/216 , G06F40/211 , G06K9/62
Abstract: 本发明涉及一种基于多句压缩的无监督科技情报摘要自动生成方法,属于自然语言生成技术领域。针对科技情报领域的多文档文本生成,首先基于LDA主题相似度词库扩展方法的主题爬虫来获取源数据。通过文本信息的权威性、时效性、内容相关性三个指标的文本信息价值评估模型,对所有文本段落进行排序。选取得分较高段落的作为生成最终科技情报的原始文本。最后,采用基于谱聚类和多句压缩的无监督多文档摘要方法,自动生成科技情报摘要。本方法有效解决了在数据筛选过程中,科技情报生成对于数据时效性以及权威性要求较高的问题,以及科技情报领域由于数据集缺乏导致传统基于神经网络多文档生成方法无法应用的问题。
-
公开(公告)号:CN113065002A
公开(公告)日:2021-07-02
申请号:CN202110417960.8
申请日:2021-04-19
Applicant: 北京理工大学
IPC: G06F16/36 , G06F40/30 , G06F40/289 , G06F40/242
Abstract: 本发明涉及一种基于知识图谱和上下文语境的中文语义消歧方法,属于自然语言处理技术领域。本发明通过构建消歧知识图谱和基于上下文语境的语义消歧,可以在没有显式语义标注的由原句和完成消歧修改后的结果组成的获取数据集中抽取歧义词实体和消歧词实体以及它们之间的关系,同时将上下文语境作为消歧词实体的属性,从而将消歧知识沉淀于知识图谱,赋能语义消歧工作。本发明可以在新的待消歧文本中准确地发现已登录的歧义词。本发明实现了上下文语境的向量表示和基于向量的相似度计算,使得利用本发明的软件可以更精准地感知歧义词所处的上下文语境。
-
公开(公告)号:CN104636425B
公开(公告)日:2018-02-13
申请号:CN201410795679.8
申请日:2014-12-18
Abstract: 本发明涉及一种网络个体或群体情绪认知能力预测与可视化方法,属于互联网舆情信息挖掘与分析领域。本发明对现有情感词典中收录的常用情感词做了整合,同时考虑了网络环境中具有情感倾向的网络情感新词及表情字符,最大限度地包含了社交媒体平台上的情感元素,并在此基础上构建了情感词本体库;确定网络个体情绪分叉点位置,用情绪认知能力指数描述网络个体的情绪认知能力水平,并以可视化的方式对多个网络个体之间的情绪分叉点差异进行展示。通过本发明可揭示网络个体或群体情绪认知能力水平的演化规律,尤其是对典型网络个体或群体的情绪动态变化过程及其情绪突变的临界点进行预测,帮助相关管理者对网络舆论进行合理引导,营造和谐网络环境。
-
-