字典学习、视觉词袋特征提取方法及检索系统

    公开(公告)号:CN104036012B

    公开(公告)日:2017-06-30

    申请号:CN201410287639.2

    申请日:2014-06-24

    Abstract: 本发明提供一种字典学习方法,包括:1)基于维度将图像的局部特征向量分为第一分段和第二分段;2)用多个局部特征向量的第一分段构造第一数据矩阵,用多个局部特征向量的第二分段构造第二数据矩阵;3)对第一数据矩阵进行稀疏非负矩阵分解,得到用于对局部特征向量的第一分段进行稀疏编码的第一字典;对第二数据矩阵进行稀疏非负矩阵分解,得到用于对局部特征向量的第二分段进行稀疏编码的第二字典。本发明还提供了基于上述两个字典对图像局部特征进行分段稀疏表示的视觉词袋特征提取方法和相应的检索系统。本发明能够大幅减少内存占用,降低词表训练时间和特征提取时间,特别适合应用于移动终端。

    字典学习、视觉词袋特征提取方法及检索系统

    公开(公告)号:CN104036012A

    公开(公告)日:2014-09-10

    申请号:CN201410287639.2

    申请日:2014-06-24

    CPC classification number: G06F17/30247

    Abstract: 本发明提供一种字典学习方法,包括:1)基于维度将图像的局部特征向量分为第一分段和第二分段;2)用多个局部特征向量的第一分段构造第一数据矩阵,用多个局部特征向量的第二分段构造第二数据矩阵;3)对第一数据矩阵进行稀疏非负矩阵分解,得到用于对局部特征向量的第一分段进行稀疏编码的第一字典;对第二数据矩阵进行稀疏非负矩阵分解,得到用于对局部特征向量的第二分段进行稀疏编码的第二字典。本发明还提供了基于上述两个字典对图像局部特征进行分段稀疏表示的视觉词袋特征提取方法和相应的检索系统。本发明能够大幅减少内存占用,降低词表训练时间和特征提取时间,特别适合应用于移动终端。

    一种基于集成学习的模式训练和识别方法

    公开(公告)号:CN102521599A

    公开(公告)日:2012-06-27

    申请号:CN201110303362.4

    申请日:2011-09-30

    Abstract: 本发明提供一种基于集成学习的模式训练和识别方法,该模式训练方法包括:1)对训练样本进行词典学习,生成冗余词典;2)利用所述冗余词典对所述训练样本进行稀疏编码,获得每个训练样本的稀疏编码系数;3)根据所述稀疏编码系数对所有训练样本进行稀疏子空间划分;4)对于每个稀疏子空间内的训练样本进行子模型训练,获得用于分类的子模型。本发明的上述模式训练和识别方法可以取得更高的识别性能,同时能显著提高训练效率和检测效率。

    色情检测模型建立方法和色情检测方法

    公开(公告)号:CN101819638A

    公开(公告)日:2010-09-01

    申请号:CN201010143777.5

    申请日:2010-04-12

    Abstract: 本发明提供一种色情检测模型建立方法,包括:从带有标注信息的样本音视频对象中提取视频特征和音频特征;根据所述标注信息,为所述样本音视频对象中的各类音频特征、视频特征分别训练模型,然后利用基于排序的加权平均融合方法计算所述模型间的融合参数;其中,所述的基于排序的加权平均融合方法遍历参数orness的取值区间,为所述参数orness的各个取值计算相应的融合参数,然后利用所述样本音视频对象计算各个融合参数的效果,选取效果最好的融合参数作为模型间的融合参数。本发明的色情检测方法与现有技术中的相关方法相比综合采用了视频特征与音频特征,检测准确率上有较大的提高。

    乱笔顺库建立方法及联机手写汉字识别评测系统

    公开(公告)号:CN1317664C

    公开(公告)日:2007-05-23

    申请号:CN200410000823.0

    申请日:2004-01-17

    Abstract: 本发明涉及一种建立乱笔顺库的方法及联机手写汉字识别技术的评测系统。本发明方法,包括标准样本库的采集和乱笔顺库的生成,其特征在于,所述乱笔顺库是按照笔画的连通关系,对采集的联机手写汉字笔迹数据进行等价划分,分割出至少一个以上的部件后,再打乱每个部件内笔画的顺序生成的。本发明的评测系统,包括:存储设备,用于存储标准样本库和乱笔顺库;采集模块,用于采集标准样本库;转换模块,用于将联机汉字笔迹数据转化成一幅二值图像;分割模块,用于按照笔画的连通关系从二值图像中分割出至少一个以上的部件;生成模块,包括一用于打乱每个部件内笔画的顺序的单元,以及一用于打乱部件之间排列顺序的单元。

    一种数字图像哈希签名方法

    公开(公告)号:CN1858799A

    公开(公告)日:2006-11-08

    申请号:CN200510077454.X

    申请日:2005-06-23

    Abstract: 本发明公开的数字图像哈希签名方法,由数字签名的生成、数字签名匹配和篡改定位组成,数字签名生成包括:1)求DCT系数;2)量化DCT低频系数,得到DCT数据矩阵;3)对DCT数据矩阵做标准化和主成分分析,得到特征向量矩阵和特征向量值;4)量化特征向量矩阵和特征值向量,生成签名;数字签名匹配包括:5)反量化特征向量矩阵;6)计算相似度;7)将相似度与阀值做比较,由比较结果决定是否匹配;篡改定位包括:8)求待检验图像的新坐标矩阵;9)估算原始图像的新坐标矩阵;10)计算待检验图像与原始图像对应块的差值向量矩阵;11)用待检图像的特征值向量,计算HTS向量;12)确定篡改块的位置。

    一种自监督对抗训练方法和装置
    47.
    发明公开

    公开(公告)号:CN119578588A

    公开(公告)日:2025-03-07

    申请号:CN202411653207.9

    申请日:2024-11-19

    Inventor: 唐胜 张瑞泽 曹娟

    Abstract: 本发明提出一种自监督对抗训练方法,包括:构建第一阶段初始模型,获取第一阶段训练样本,对该第一阶段初始模型进行自监督训练,获得干净模型;构建第二阶段初始模型,获取第二阶段训练样本,生成该第二阶段训练样本的增强样本,以该干净模型对该增强样本的输出特征为伪监督信号;生成该增强样本的对抗样本,以该伪监督信号、该增强样本和该对抗样本对该第二阶段初始模型进行自监督对抗训练,获得鲁棒模型;以该鲁棒模型进行图像分类任务。本发明还提出一种自监督对抗训练装置,以及一种计算机可读存储介质和一种电子设备。本发明的训练方法能与不同的自监督学习框架无缝结合,提升其对抗及干净样本分类准确率并减小与监督对抗学习的性能差距。

    一种基于对抗攻击的图像反生成方法及装置

    公开(公告)号:CN119169120A

    公开(公告)日:2024-12-20

    申请号:CN202410417957.X

    申请日:2024-04-08

    Abstract: 本发明提出一种基于对抗攻击的图像反生成方法,包括:对目标图像进行分割,获取该目标图像的关键掩码;在该关键掩码上添加对抗性扰动,得到该目标图像的反生成保护图像。本发明的方法使用较少难以察觉的对抗噪声来反生成保护用户重要的概念,如人类图像中的面部区域,能有效地防止了恶意的个性化,与MIST等针对整个图像的反生成保护方法相比,它在安全性和噪声的视觉质量之间提供了更好的平衡。本发明还提出一种基于对抗攻击的图像反生成装置,以及一种计算机可读存储介质和一种电子设备。

Patent Agency Ranking