一种基于多语义特征融合的文本分类方法和装置

    公开(公告)号:CN117271765A

    公开(公告)日:2023-12-22

    申请号:CN202311059507.X

    申请日:2023-08-22

    Abstract: 本发明公开了一种基于多语义特征融合的文本分类方法及装置,所述方法包括:获取待分类的文本,将所述待分类的文本进行预处理,得到处理后的文本;将词级粒度向量输入训练完毕的词级语义特征提取模型,得到词级语义特征;将句子级粒度向量输入训练完毕的句子级语义特征提取模型,得到句子级语义特征;基于文章级向量对所述处理后的文本进行特征提取,得到文本级语义特征;将所述词级语义特征、句子级语义特征以及文本级语义特征进行特征拼接融合,得到融合后特征,使用分类器对所述融合后特征进行分类。本方法从词粒度、句子粒度和文章粒度等多个层面对文本进行精细语义建模,利用文本的多语义融合特征进行文本分类,提高了文本分类的准确率。

    一种融合多源信息的人名消歧方法及装置

    公开(公告)号:CN117149949A

    公开(公告)日:2023-12-01

    申请号:CN202311059658.5

    申请日:2023-08-22

    Abstract: 本发明公开了一种融合多源信息的人名消歧方法及装置,所述方法包括:将所有文本划分为若干个类;基于同名作者对应的机构名称、文本共同作者和文本主题内容,分别对每一类文本进行聚类,以得到该类文本的机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果;基于簇内机构信息及文本的共现信息,对机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果进行融合,得到该类文本的初步聚类结果;提取初步聚类结果中的单簇文本,并基于所述单簇文本与该类文本中其他文本的相似度进行单簇文本的融合后,得到人名消歧结果。本发明可以实现了更好的消歧准确率。

    基于表示学习的相似移动应用计算方法及装置

    公开(公告)号:CN110879861A

    公开(公告)日:2020-03-13

    申请号:CN201910834941.8

    申请日:2019-09-05

    Abstract: 本发明公开了一种基于表示学习的相似移动应用计算方法,所述方法包括:读取移动应用相关的文档、网页以及图数据库中的三元组,获取与文档、网页以及图数据库中与所述移动应用相关的实体,构建表示学习算法-网络嵌入模型LINE网络;基于LINE负采样技术优化Skip-gram模型,通过所述Skip-gram模型训练所述LINE网络,得到每个实体以及移动应用自身的向量表示;根据每个实体以及移动应用自身的向量表示,对移动应用进行相似度计算。

    一种动态URL过滤方法及装置

    公开(公告)号:CN104573033B

    公开(公告)日:2017-12-19

    申请号:CN201510020876.7

    申请日:2015-01-15

    Abstract: 本发明提出了一种动态URL过滤方法及装置,该方法包括:基于URL标注集创建信息字典;针对URL标注集中的每一个URL,根据所述信息字典生成对应的特征向量,由URL标注集中所有的URL对应的特征向量组成特征矩阵;对URL特征矩阵进行分类得到特征权重向量和二分类阈值;基于所述信息字段对待预测的URL进行特征提取,并基于提取出的特征生成所述待预测的URL的特征向量;将所述待预测的URL的特征向量与所述特征权重向量对应相乘后相加得到目标数值,将目标数值与二分类阈值相比较以判断所述待预测的URL是动态URL还是静态URL。本发明可以离线处理,不需要访问网络、减少了存储,比较节省处理时间和计算资源。

Patent Agency Ranking