-
公开(公告)号:CN116884473B
公开(公告)日:2024-04-26
申请号:CN202310581243.8
申请日:2023-05-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B15/20 , G16B40/00 , G06F18/214 , G06F18/241
Abstract: 本发明公开了一种蛋白质功能预测模型生成方法及装置,包括获取训练蛋白质的氨基酸三维原子坐标,并根据其进行图论方法生成蛋白质二维接触图;对训练蛋白质的氨基酸三维原子坐标进行算法处理获取第一特征矩阵,对蛋白质二维接触图进行算法处理获取第二特征矩阵,第一特征矩阵与训练蛋白质的氨基酸三维原子坐标中序列作用位点对应,第二特征矩阵与训练蛋白质的氨基酸三维原子坐标中结构作用折叠结构对应;根据第一特征矩阵和第二特征矩阵分别对应的数据标签训练预先构建的蛋白质功能分类器,得到蛋白质功能预测模型。通过将训练蛋白质的氨基酸结构和序列作为信息源提取特征,提高了预测模型对蛋白质功能的预测精度。
-
公开(公告)号:CN117035074B
公开(公告)日:2024-02-13
申请号:CN202311286288.9
申请日:2023-10-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于反馈强化的多模态知识生成方法及装置,包括:构建多模态模型,在多模态知识生成任务中将人类反馈引入所述多模态模型,形成的监督数据用于训练预先设立的奖励回报模型;将所述监督数据输入奖励回报模型进行训练,使得奖励回报模型从所述监督数据中学习到人类的理解;利用内外探索相结合的强化学习方法微调所述多模态模型,使得多模态模型能够学习到人类偏好,生成更自然的知识;本发明具有人类反馈知识的强化学习方法应用于多模态知识生成任务中,解决了多模态知识生成任务缺乏人类反馈监督的不足,并引入基于内外探索相结合的强化学习微调技术,有效缓解多奖励稀疏问题。
-
公开(公告)号:CN116958748B
公开(公告)日:2024-02-13
申请号:CN202310947023.2
申请日:2023-07-28
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06V10/774 , G06V10/771 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及图像检测技术领域,公开了多任务因果学习的图像检测方法、装置、设备及介质,方法包括:根据多个样本特征对同一任务的重要性分数,从多个样本特征中筛选出干预特征;根据合并反事实特征,以及第二任务的反事实特征,确定第一任务对第二任务的因果亲和力;分别根据每个任务的反事实特征和样本特征的预测损失值生成第一正则约束项;根据第一任务的样本特征的预测损失值、第二任务的样本特征的预测损失值以及第一任务对第二任务的因果亲和力,生成第二正则约束项;根据判别损失函数、第一正则约束项和第二正则约束项,生成预测损失函数;根据预测损失函数对任务模型进行训练得到优化后的多任务模型。本发明能够提高图像检测的性能。
-
公开(公告)号:CN117454941A
公开(公告)日:2024-01-26
申请号:CN202311801348.6
申请日:2023-12-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/0464 , H04L9/08 , G06N3/08
Abstract: 本发明公开了一种基于函数秘密共享的安全二值神经网络推理系统。该系统包括输入层、隐含层和隐含层,根据实际神经网络结构设置若干个安全全连接运算单元、安全卷积运算单元、安全批量归一化运算单元、安全二值激活函数运算单元和安全最大池化运算单元。本发明通过生成矩阵乘法三元组,并基于此构建了高效的安全全连接层运算单元和安全卷积运算单元,结合离线‑在线计算范式,大大减少了客户端所需的计算和通信。此外,本发明基于函数秘密共享技术构建了安全二值激活函数运算单元和安全最大池化运算单元,能够支持混合位宽计算,减少了非线性函数计算所需的通信代价。
-
公开(公告)号:CN117153260A
公开(公告)日:2023-12-01
申请号:CN202311204657.5
申请日:2023-09-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B30/10 , G06F18/23 , G06F18/22 , G06F18/2135
Abstract: 本发明公开了一种基于对比学习的空间转录组数据聚类方法、装置、设备及存储介质,该方法包括:基于空间转录组数据获得加权的特征矩阵和邻接矩阵并构建邻接图;将邻接图分别输入孪生网络结构两个编码器以学习第一节点表示和第二节点表示;基于第一节点表示、第二节点表示构建用于计算对比损失的正样本集;基于节点的软聚类分布和辅助分布计算聚类损失;通过对比损失和聚类损失指导模型训练进而获得聚类结果。通过孪生网络结构进行对比学习获得用于构建正样本集的节点表示,并计算对比损失和聚类损失,并基于节点间的对比损失和聚类损失指导模型训练,如此基于对比学习获得了针对基因转录组数据的数据聚类方法,提高了空间转录组数据聚类的针对性和准确性。
-
公开(公告)号:CN114969318B
公开(公告)日:2023-04-07
申请号:CN202210069686.4
申请日:2022-01-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 东莞理工学院
IPC: G06F16/35 , G06F16/36 , G06F40/284 , G06F40/211 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多图稀疏交互网络的多任务立场检测方法。该方法通过将输入文本输入至多图稀疏交互网络模型,得到所述输入文本的立场检测极性和情感分类极性;所述多图稀疏交互网络模型包括文本编码模块、多图构建模块、多图稀疏交互模块和任务相关注意力模块;所述多图构建模块用于构建所述多图稀疏交互网络模型的立场任务图、情感任务图和任务关系图;多图稀疏交互模块用于对立场任务图、情感任务图和任务关系图的图内节点特征进行更新,和对节点特征在图间的稀疏交互进行更新;所述任务相关注意力模块用于计算输入文本的检测立场的极性和分类情感的极性。本发明技术方案提高了针对推文文本进行立场检测的准确性。
-
公开(公告)号:CN115017990B
公开(公告)日:2023-01-17
申请号:CN202210622541.2
申请日:2022-06-01
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 湖南大学
IPC: G06F18/2415 , G06N3/0464 , G08G1/01
Abstract: 本发明公开了一种交通流量预测方法、装置、设备及存储介质,该方法包括:采集历史交通流量数据,将所述历史交通流量数据按照与预设目标时间的时间相关性划分为多种时间分量数据;对所述多种时间分量数据进行数据处理,生成多种特定流量特征、共享流量特征和数据分布特征;其中,所述数据分布特征包括近似分布特征和条件概率特征;基于所述多种特定流量特征、所述共享流量特征和所述数据分布特征构建交通流量预测模型;采集当前交通流量数据,将所述当前交通流量数据传输给所述交通流量预测模型,生成交通流量预测数据。本方法提升了交通流量预测的精度。
-
公开(公告)号:CN115601960A
公开(公告)日:2023-01-13
申请号:CN202211122126.7
申请日:2022-09-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)(CN)
Abstract: 本发明公开了一种基于图对比学习的多模态交通流量预测方法及系统,方法包括:基于历史交通流量数据建立局部和全局流量异构图;对全局和局部流量异构图进行编码得到对应的异构图流量特征;计算局部流量异构图流量特征的互信息来优化局部流量异构图流量特征;多个局部流量异构图流量特征经过注意力机制融合成的全局流量特征,与全局流量异构图流量特征进行图对比学习来优化全局流量异构图流量特征;将优化后的局部和全局流量异构图流量特征输入到空间图卷积神经网络分别预测多模态的交通流量。本发明可以有效地捕获不同出行模式之间的相关性和差异性,有助于更好地捕获多种出行模式之间的依赖关系,从而提升交通流量预测的精度。
-
公开(公告)号:CN115200603A
公开(公告)日:2022-10-18
申请号:CN202211106644.X
申请日:2022-09-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于同态加密和匿名伪装的导航服务隐私保护方法及装置,方法包括:LBS服务商进行同态加密方案的初始化;用户利用匿名伪装算法分别生成出匿名伪装区域;用户根据匿名伪装区域的路网信息,随机选取出发点附近满足伪装距离L的出发地伪装点和目的地伪装点,同步规划出真实出发地到伪装出发地的路线;云服务商规划出一组候选路线,同时向LBS服务商请求实时路况信息;云服务商对候选路线组的开销进行进一步计算,利用全同态加密的比较运算,将密文比较结果传输给LBS服务商;从候选路线组中选取最佳路线并在本地将和伪装区域内的路线连接,生成最终的出行路线。本发明采用全同态加密和匿名伪装技术实现高质量的导航服务隐私保护。
-
公开(公告)号:CN114756694B
公开(公告)日:2022-10-14
申请号:CN202210677070.5
申请日:2022-06-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 平安科技(深圳)有限公司
Abstract: 本发明提供的一种基于知识图谱的推荐系统、推荐方法和相关设备,系统包括:用户历史信息嵌入模块根据用户的历史交互行为生成用户表征;知识感知嵌入模块利用知识感知的注意力机制,为用户和物品生成知识加权表征;动态信息共享模块基于神经网络,根据用户物品交互的二部图以及物品侧的知识图谱得到用户/物品热门种子,计算每个用户/物品与用户/物品热门种子的相似度,根据相似度共享用户/物品热门种子的动态表征;将知识加权表征和所述动态表征进行聚合,得到每个用户和物品的最终表征并进行点积获得最后的预测值。本发明将各用户/物品与其相似的热门用户/物品进行动态的信息共享,缓解了用户侧和物品侧的冷启动问题。
-
-
-
-
-
-
-
-
-