-
公开(公告)号:CN114418033A
公开(公告)日:2022-04-29
申请号:CN202210170049.6
申请日:2022-02-24
Applicant: 南通大学
IPC: G06K9/62 , G06F40/289 , G06F16/35 , G06F8/41 , G06N3/08
Abstract: 本发明提供了一种基于CodeBert的代码编程语言分类方法,属于计算机应用技术领域。其技术方案为:包括以下步骤:(1)对原始数据集进行处理,去除其中的噪音,并使用BPE方法进行分词;(2)从CodeBert的每一层中提取表征信息作为表征信息序列,使用双向循环神经网络(Bi‑LSTM)和注意力机制关注可提供重要表征信息的层;(3)基于语料库对构建的模型进行训练,得到代码编程语言分类模型。本发明的有益效果为:该方法能快速识别源代码所属的编程语言类型,降低手工分类源代码编程语言的成本。
-
公开(公告)号:CN112947930A
公开(公告)日:2021-06-11
申请号:CN202110134579.0
申请日:2021-01-29
Applicant: 南通大学
Abstract: 本发明提供了一种基于Transformer的Python伪代码自动生成方法,包括以下步骤:S1、在Github上下载Python源代码和对应的伪代码以构建初始语料库,并对该语料库执行一系列预处理操作得到语料库;S2、将语料库分成训练集、验证集,训练集用于构建并训练模型,验证集用于进行模型优化;S3、基于上述构建的语料库,对构建的基于Transformer的CNN模型进行训练,利用结合位置编码方法以及注意力机制attention进行优化,得到伪代码自动生成模型。本发明的有益效果为:该方法可以帮助开发人员自动快速地生成具有较强可读性的伪代码,生成的伪代码准确地描述代码的实现功能和具体实现步骤。
-