-
公开(公告)号:CN105953490A
公开(公告)日:2016-09-21
申请号:CN201610265110.X
申请日:2016-04-26
Applicant: 哈尔滨工业大学
Abstract: 一种组网运行的空冷系统,它涉及一种空冷系统,具体涉及一种组网运行的空冷系统。本发明为了解决现有空冷机组背压不易控制,易受机组工况及环境因素影响,检修或停机时系统闲置,空冷塔冷却系统冷却能力下降导致机组背压升高、甚至超限的问题。本发明的相邻两个空冷机组的低压缸排汽出口通过一个第一管路连接,相邻两个空冷机组的凝结水出口通过一个第二管路连接,每个第一管路上分别安装一个连接阀门,每个第二管路上分别安装一个连接阀门,每个空冷机组的乏汽入口与相对应的汽轮机低压缸乏汽出口之间通过一个低压缸排汽管道连接,每个空冷机组的凝结水出口通过一个凝结水排道与一个凝结水泵连接。本发明属于电力系统领域。
-
公开(公告)号:CN105914787A
公开(公告)日:2016-08-31
申请号:CN201610356310.6
申请日:2016-05-25
Applicant: 哈尔滨工业大学 , 南京遒涯信息技术有限公司 , 哈尔滨机易电站设备有限公司
CPC classification number: Y02E10/763 , Y02E60/76 , Y04S40/22 , H02J3/386 , G06F17/5009 , H02J2003/007
Abstract: 一种基于功率瞬时相对变化速度的风电不确定性的定量刻画方法,涉及风功率不确定性的定量刻画方法。为了刻画风功率波动的不确定性,进而满足电力系统对实时调度和优化的控制需求。本发明定义了风功率变化速率刻画指标,在大量统计数据的基础上,发现了风功率变化速率刻画指标的多尺度调幅效应并给出了一个单一三参数幂律模型,并发现风功率变化速率刻画指标存在日周期特性。最后,提出了功率瞬时相对变化速度的概念,定义风功率多尺度变化速率刻画指标受小时级平均风功率的调制,通过对风电场24小时风功率分别建立幂律模型进行拟合,得到时变三参数幂律模型并用其准确定量刻画风功率不确定性。满足新能源电力系统的实时调度与优化控制的特殊需求。
-
公开(公告)号:CN104466993A
公开(公告)日:2015-03-25
申请号:CN201410752961.8
申请日:2014-12-09
Applicant: 广东电网有限责任公司电力科学研究院 , 哈尔滨工业大学
CPC classification number: H02J3/24
Abstract: 本发明提供一种调速器侧低频振荡稳定器,包括:依次连接的状态反馈控制器、滤波模块和限幅模块;所述状态反馈控制器连接电力系统输出端,所述限幅模块连接调速系统;所述状态反馈控制器用于对电力系统反馈的电流信号产生抑制控制信号,所述滤波模块用于根据设定的频率,通过传递函数滤除所述状态反馈控制器输出的抑制控制信号中频率小于所述设定的频率的控制信号;所述限幅模块用于将所述滤波模块输出信号的幅值限制在设定的范围,并将经过限幅的控制信号输送至所述调速系统,控制调速系统产生正阻尼力矩。上述调速器侧低频振荡稳定器可以降低状态反馈控制器产生的控制信号对电力系统的不利影响,提高系统的正常运行效率。
-
公开(公告)号:CN103046972B
公开(公告)日:2014-12-10
申请号:CN201210539660.8
申请日:2012-12-13
Applicant: 哈尔滨工业大学
IPC: F01D17/10
Abstract: 汽轮机单阀或多阀的一种非线性自动无扰切换方法,它涉及汽轮机单阀或多阀的切换方法。该方法解决现有单阀配汽规律和多阀配汽规律在线性切换方式下会引起机组功率较大负荷扰动的问题。所述方法包括以下步骤:切换点χ0和非线性切换阀门的选择;切换规律优化设计;配汽方式的非线性切换规律可以由三种方案确定:实验方法确定切换方法、理论计算确定切换方法或实验与理论计算相结合的方法。本发明用于汽轮机单阀或多阀的切换。
-
公开(公告)号:CN103699800A
公开(公告)日:2014-04-02
申请号:CN201310750044.1
申请日:2013-12-31
Applicant: 哈尔滨工业大学
IPC: G06F19/00
Abstract: 基于频域多尺度风速信号可预报性的超短期风速预测方法,属于分析和测量控制技术领域,涉及基于频域多尺度风速信号可预报性的超短期风速预测方法。为解决现有预测方法未考虑频域多尺度的可预报性问题和统计预报模型中输入空间的数据维数选取需要依靠经验而导致的预测精度低、模型训练时间长的问题,通过增加可预报性分析和自相关性分析技术步骤避免了高频分量预测的步数过长而导致叠加后反而对预测结果产生负面影响有效提高了超短期风速预测的精度并减少了模型训练的时间。本发明主要用于风电场对电场功率的预测,从而帮助电网制定合理的调度计划,确定旋转备用,安全经济地保证电网的运行。
-
公开(公告)号:CN103413174A
公开(公告)日:2013-11-27
申请号:CN201310389450.X
申请日:2013-08-30
Applicant: 哈尔滨工业大学
IPC: G06N3/08
Abstract: 基于深度学习方法的短期风速多步预测方法,涉及一种短期风速的多步预测方法。为了解决目前的风速预测方法存在风速预测效果差的问题。它包括:一:基于深度学习方法,建立具有多输入多输出结构的深度神经网络回归模型;二:采用逐层贪心方法,结合被测风电场的近期实际风速数据对建立的深度神经网络回归模型进行训练,通过所述模型的非线性映射功能,学习得到所述模型的序列之间的映射关系,来确定深度神经网络回归模型;三:根据确定的深度神经网络回归模型,对被测风电场的实际风速进行多步预测,得到所述被测风电场的风速预测结果。它用于风电场短期风速的预测。
-
公开(公告)号:CN102042092B
公开(公告)日:2013-05-29
申请号:CN201010574316.3
申请日:2010-12-06
Applicant: 哈尔滨工业大学
Abstract: 一种涡轮增压系统压气机风量切换控制的喘振保护方法,它涉及一种喘振保护方法。本发明解决了现有的涡轮增压系统压气机的喘振保护方法的安全裕度过于保守,导致锅炉性能降低的问题。当压气机的风量增加时,通过交叉限幅使辅助汽轮机回路风量给定信号指令为0,将风量给定信号送入旁通阀控制器,如果旁通阀的容许开启裕度Δbp大于0,将旁通阀控制器的控制输出信号与喘振保护控制器输出信号值大的信号送入旁通阀执行器,直至旁通阀关闭;如果旁通阀关闭仍不能满足压气机的风量要求,则将输入旁通阀的风量给定信号送入辅助汽轮机控制器。本发明的喘振保护方法在对压气机进行喘振保护的同时,使锅炉系统的性能大大提高,从而提高了锅炉系统的经济性。
-
公开(公告)号:CN102709926A
公开(公告)日:2012-10-03
申请号:CN201210216019.0
申请日:2012-06-28
Applicant: 哈尔滨工业大学
IPC: H02J3/24
Abstract: 智能电网建设中基于相关向量机的旋转热备用的调度方法,本发明涉及一种基于相关向量机的旋转热备用的调度方法。为解决含规模化风电等新能源电力系统难以设置旋转热备用以平抑风电并网功率波动问题。将初始化设置结果传递到风功率相关向量机预测系统中;风电场风功率采集模块实时将风电场风功率的测量值进行采集,进行数据预处理后将数据传递给风功率相关向量机预测系统中;风功率相关向量机预测系统接收数据,对未来时刻的风功率进行预测,预测的结果为未来时刻的风功率值和风功率的误差带;将得到的预测值和误差带送入到调度控制器中,预测值即为风电场未来的发电计划,误差带代表的功率范围即为对风电场配备的旋转热备用。本发明用于智能电网建设中。
-
公开(公告)号:CN102682336A
公开(公告)日:2012-09-19
申请号:CN201210149399.0
申请日:2012-05-15
Applicant: 哈尔滨工业大学
IPC: G06N3/12
Abstract: 基于改进遗传算法的汽轮机调节级喷嘴数目设计优化方法,具体涉及一种汽轮机调节级喷嘴数目设计优化方法。本发明为了实现在多负荷点下汽轮机调节级喷嘴组喷嘴数目的优化,使机组在不同的负荷下均能够稳定工作,并且让喷嘴尽可能组成更多的阀点,使节流损失最小,调节级内效率最高的目的。主要步骤:基于改进遗传算法求出满足实际流量与理论流量偏离值Y最小时的输出该负荷点能达到最优的喷嘴数目组合、调节级后流量、各阀门后压力和气流力:通过改进遗传编码和适应度函数,然后进行遗传算法操作,输出满足实际流量与理论流量偏离值Y最小时的达到最优的喷嘴数目组合。本方法提高了优化过程的速度和优化结果的准确性。
-
公开(公告)号:CN102182700A
公开(公告)日:2011-09-14
申请号:CN201110130910.8
申请日:2011-05-19
Applicant: 哈尔滨工业大学
Abstract: 涡轮增压系统压气机风量分配控制的喘振保护方法及实现该方法的喘振保护装置,属于涡轮增压系统压气机的喘振保护领域。它解决了现有涡轮增压系统压气机的喘振保护方法的安全裕度过于保守,使其无法快速响应当前的风量需求,导致锅炉性能降低的问题。它将设定的压气机风量给定信号和实时采集获得的压气机风量实际信号作差,再经过比例微分单元调节,生成风量控制信号;通过交叉限幅单元对风量控制信号进行处理,输出待调节风量信号,并根据该待调节风量信号选择相应的风量分配方法,然后根据所选择的风量分配方法对压气机的风量进行调节。本发明适用于涡轮增压系统压气机的喘振保护。
-
-
-
-
-
-
-
-
-