一种基于深度图像的手势识别方法与系统

    公开(公告)号:CN104636725B

    公开(公告)日:2017-09-29

    申请号:CN201510058032.1

    申请日:2015-02-04

    Abstract: 本发明公开了一种基于深度图像的手势识别方法,训练数据集和测试数据集中的深度图像通过深度传感器采集得到,首先计算图像中人体区域的最小深度值,再利用深度阈值,结合人手是离传感器最近物体的预设条件,分割出深度图像中的手势;然后获取手势在三个正交平面上的投影图,分别称为正视投影图、侧视投影图和顶视投影图;接着提取三个投影图的轮廓片段包特征,并级联成原始深度手势的特征向量;最后训练分类器,对从待识别深度图像中获取的手势特征向量进行分类,得到待识别手势的识别结果。本发明还提供了相应的手势识别系统。本发明方法手势识别简单易行,推广能力强,识别准确率高,能有效克服杂乱背景、光照、噪声及自遮挡等不利因素的影响。

    基于在线示例分类器精化的多示例检测网络及其训练方法

    公开(公告)号:CN106682696A

    公开(公告)日:2017-05-17

    申请号:CN201611241532.X

    申请日:2016-12-29

    Abstract: 本发明公开了一种基于在线示例分类器精化的多示例检测网络及其训练方法,包括:确定训练图片集,并选择每张训练图片中的多个候选区域;获得所述训练图片集中训练图片的卷积特征图,并得到各候选区域的卷积特征;将各候选区域的卷积特征输入到全连接层中,得到各候选区域的特征向量;构建一个基准示例分类器,并构建多个精化示例分类器,通过更新每个候选区域得分的权重进行在线示例分类器精化;合并整个网络中的损失函数,训练端到端的多示例检测网络。本发明将多示例分类器训练和分类器精化整合到一起,训练速度快识别准确率高,仅依赖图像标签的数据集,不需要人工对目标示例的位置和标签进行标注,适用于弱监督的目标检测问题。

Patent Agency Ranking