-
公开(公告)号:CN103472330B
公开(公告)日:2015-11-04
申请号:CN201310418373.6
申请日:2013-09-13
Applicant: 北京无线电计量测试研究所
IPC: G01R31/00
Abstract: 本发明公开了一种超导稳频振荡器的频率稳定度的测量装置,该测量装置包括第一功分器(2)、分频器(3)、第一低通滤波器(4)、相位噪声测试仪(5)、参考源(6)、混频器(7)、第二低通滤波器(8)、第二功分器(9)、第一放大器(10)、第二放大器(11)、频率计数器(12)和计算机(13)。本发明的测量装置能够用于测量超导稳频振荡器的频率稳定度。与现有技术的频率稳定度的测量装置相比,本发明的测量装置的测量分辨率明显提高,其能够测量的频率稳定度提高2个数量级。
-
公开(公告)号:CN103457567A
公开(公告)日:2013-12-18
申请号:CN201310418599.6
申请日:2013-09-13
Applicant: 北京无线电计量测试研究所
IPC: H03H9/02
Abstract: 本发明公开了一种用于超导稳频振荡器的超导谐振腔的内表面处理方法,包括如下步骤:离心式滚磨抛光,离心式滚磨抛光的时间为10-15天;低温退火,低温退火的温度为750℃,低温退火的时间为2-5小时;高温退火,高温退火的温度为1400-1500℃,高温退火的时间为24-32小时;化学抛光,化学抛光的时间为20-40分钟;电抛光;高压水冲洗,高压水冲洗的时间为40-120小时;低温烘烤,低温烘烤的温度为70-80℃,低温烘烤的时间为3-7天。所述方法能够有效地消除因电子束焊接引起的超导谐振腔内表面的凸起,从而提高超导谐振腔的Q值,当超导谐振腔的频率为9GHz时,其Q值高达109。
-
公开(公告)号:CN102751655A
公开(公告)日:2012-10-24
申请号:CN201210199736.7
申请日:2012-06-14
Applicant: 北京无线电计量测试研究所
IPC: H01S3/131
Abstract: 本发明涉及一种提高超快激光放大器脉冲能量稳定性的装置,该装置包括激光振荡器、信号发生器、选单控制器、泵浦激光器和激光放大器,该装置还包括与信号发生器、泵浦激光器和激光放大器连接的反馈控制器,用于实时监测激光放大器的脉冲能量,输出反馈信号来调节激光放大器激光腔的起振时刻相对于泵浦激光脉冲的延时。本发明无需改动放大器系统内的任何光路,只需用电路控制延时即可实现对放大激光脉冲能量的控制,实现起来简单易行且性能可靠。
-
公开(公告)号:CN102610356A
公开(公告)日:2012-07-25
申请号:CN201210050608.6
申请日:2012-02-29
Applicant: 北京无线电计量测试研究所
Abstract: 本发明公开了一种可调制量子选态系统,该系统包括磁透镜(1)、波纹管(2)、调节螺杆(3)、准直器(4)、原子源(5)、真空管接口(6)、原子检测系统(7)、限流管(8)、第一支撑件(9)和第二支撑件(10)。本发明提供的可调制量子选态系统不需要破坏真空,也不需要重新准直,量子选态效率高,使用方便,可以在实验和工程上达到很好的效果。应用所述系统能够将氢原子的量子选态效率提高20%。
-
公开(公告)号:CN108917922B
公开(公告)日:2021-09-10
申请号:CN201810742056.2
申请日:2018-07-09
Applicant: 北京无线电计量测试研究所
IPC: G01J1/00
Abstract: 本发明公开了一种激光功率的量子测量方法。本发明利用了原子特性及原子频标系统,将对激光功率的直接测量转变成对原子跃迁频率的测量,是原子光谱技术与光功率测量的结合,与现有的方法相比,具有原理上的创新。现有的测量方法可达到的测量精度受限,报道的最优值在10‑4量级,不能满足日益增长的精密测量需求。本发明提高了测量精度,理论上可提高1~2个量级甚至更多,达到10‑5至10‑6量级。将提高对激光功率的测量能力、提高光学计量能力,可促进激光计量行业的发展。
-
公开(公告)号:CN110361604B
公开(公告)日:2021-08-13
申请号:CN201910664244.2
申请日:2019-07-23
Applicant: 北京无线电计量测试研究所
IPC: G01R29/08
Abstract: 本发明公开一种电场探测量子组件和制备方法以及量子场强传感器。电场探测量子组件的一种实施方式包括:第一直波导(110)、第二直波导(120)、环形波导(200)、第一光纤耦合接头(410)和第二光纤耦合接头(420);第一直波导(110)和第二直波导(120)分别与环形波导(200)的相互平行的两条切线重合,第一直波导(110)和第二直波导(120)分别与环形波导(200)在切点处相通,环形波导(200)包括两个分别与两条切线等距的金属气室(300),金属气室(300)内封存有碱金属蒸汽,第一光纤耦合接头(410)与第一直波导(110)的一个端口连接,第二光纤耦合接头(420)与第二直波导(120)的一个端口连接。本发明的电场探测量子组件采用光纤接口,体积小易调节。
-
公开(公告)号:CN110718835B
公开(公告)日:2021-03-26
申请号:CN201910991619.6
申请日:2019-10-18
Applicant: 北京无线电计量测试研究所
Abstract: 本发明公开一种微波源,包括半导体激光器、光电调制器、第一光耦合器、第一偏振控制器、第二偏振控制器、第二光耦合器、谐振腔模块、光探测器、滤波器、定向耦合器;所述半导体激光器、光电调制器和第一光耦合器沿着光路依次连接;第一光耦合器的一个输出端连接第一偏振控制器的输入端;第一光耦合器的另一个输出端连接第二偏振控制器的输入端;第一偏振控制器的输出端连接第二光耦合器的一个输入端;第二偏振控制器的输出端连接第二光耦合器的另一个输入端;第二光耦合器、谐振腔模块、光探测器、滤波器和定向耦合器依次连接;定向光耦合器与所述光电调制器连接;该发明能够获得极低的相位噪声,且杂散波抑制水平好,成本较低,光路调节较为简单。
-
公开(公告)号:CN108259039B
公开(公告)日:2021-01-26
申请号:CN201711265525.8
申请日:2017-12-05
Applicant: 北京无线电计量测试研究所
IPC: H03L7/26
Abstract: 本申请公开了一种汞离子微波频标真空制备方法,包括:将所述汞离子微波频标的真空系统封装;对所述封装真空系统检漏和补漏,直至不漏;对检漏后的真空系统利用分子泵组真空预抽;对所述预抽真空系统表面加热至200℃烘烤,同时,通过220V交流电对离子泵烘烤,二者持续烘烤一周;打开离子泵,对持续烘烤的所述预抽真空系统抽真空24±2小时;对所述高真空系统内的真空规和质谱仪除气;对钛升华泵除气,停止烘烤;每隔30分钟对钛升华泵接通48A直流电5分钟,反复操作3次,关闭钛升华泵;利用离子泵继续抽取真空24±2小时,得到超高真空系统。本发明可制备真空度为2E‑9Pa量级的超高真空系统,比现有系统提高一个数量级。
-
公开(公告)号:CN110518981B
公开(公告)日:2020-10-27
申请号:CN201910902770.8
申请日:2019-09-24
Applicant: 北京无线电计量测试研究所
Abstract: 本发明提出一种微波频率传递装置,包括配对的发射混沌态光信号的第一激光发射器和第二激光发射器、光电调制器、第一光探测器、第二光探测器、微波解调器、微波滤波器;第一激光发射器发射第一混沌信号,光电调制器将被传递信号和第一混沌信号混合生成混沌载波信号,混沌载波信号经过光纤传输至第一光探测器,第一光探测器将混沌载波信号转化为第一电信号,并将第一电信号输入至微波解调器;第二激光发射器发射第二混沌信号,第二光探测器将第二混沌信号转化为第二电信号,并将第二电信号输入至微波解调器;微波解调器将第一点电信号和第二电信号相互抵消,解调出混沌载波信号中的被传递信号,并将被传递信号输入至微波滤波器进行滤波后输出。
-
公开(公告)号:CN110718835A
公开(公告)日:2020-01-21
申请号:CN201910991619.6
申请日:2019-10-18
Applicant: 北京无线电计量测试研究所
Abstract: 本发明公开一种微波源,包括半导体激光器、光电调制器、第一光耦合器、第一偏振控制器、第二偏振控制器、第二光耦合器、谐振腔模块、光探测器、滤波器、定向耦合器;所述半导体激光器、光电调制器和第一光耦合器沿着光路依次连接;第一光耦合器的一个输出端连接第一偏振控制器的输入端;第一光耦合器的另一个输出端连接第二偏振控制器的输入端;第一偏振控制器的输出端连接第二光耦合器的一个输入端;第二偏振控制器的输出端连接第二光耦合器的另一个输入端;第二光耦合器、谐振腔模块、光探测器、滤波器和定向耦合器依次连接;定向光耦合器与所述光电调制器连接;该发明能够获得极低的相位噪声,且杂散波抑制水平好,成本较低,光路调节较为简单。
-
-
-
-
-
-
-
-
-